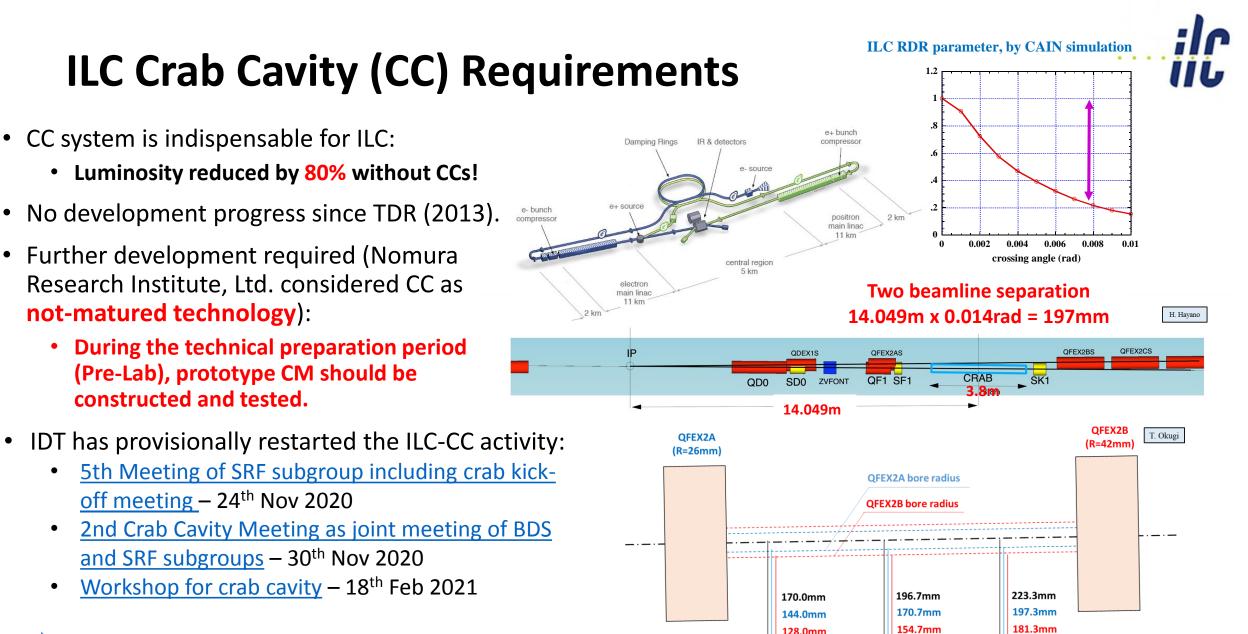


WP-3: Summary of Crab Cavity Workshop

Peter McIntosh, UKRI-STFC Daresbury Laboratory LCWS2021

15th -18th March 2021



Overview

- ILC Crab Cavity (CC) Requirements
- ILC Technical Preparation (Pre-Lab)
- Crab Cavity Workshop
- Workshop Discussion/Questions
- Conclusions

1.9m

S = 14.05 m

1.9m

ILC Technical Preparation (Pre-Lab)

WP3 Crab Cavity System

- ILC Pre-Lab phase aims to produce and test a prototype CM (pCM) system containing two cavities.
- Necessary to **demonstrate synchronized operation** with two sets of cavities in one pCM.
- If installed **14 m from the IP**, the **beam-pipe** for counter-beam extraction will **need to pass through the pCM**.
- The cavity, power coupler, tuner and pCM will be designed and developed.
- The pCM containing the two cavities will be assembled.
- In final year, a synchronized operation with two CC's to be performed to complete the technical demonstration of the CC system.
- A collaboration is expected to be formed and the preparation to be advanced mainly abroad (i.e. not based in Japan).

Item	-	ecification TDR)
Beam energy	125 G	eV (e ⁻)
Crossing angle	14 n	nrad
Installation site	14 m from IP	
RF repetition rate	5 Hz	
Bunch train length	727 µsec	
Bunch spacing	554 nsec	
Operational temperature	2.0 K (?)	
Cavity frequency	3.9 GHz	1.3 GHz
# of cell	3-cell	3-cell/9-cell (?)
Total kick voltage	0.615 MV	1.845 MV
Relative RF phase jitter	0.069 deg rms (49 fs rms)	0.023 deg rms (49 fs rms)

CC Scope for Pre-Lab

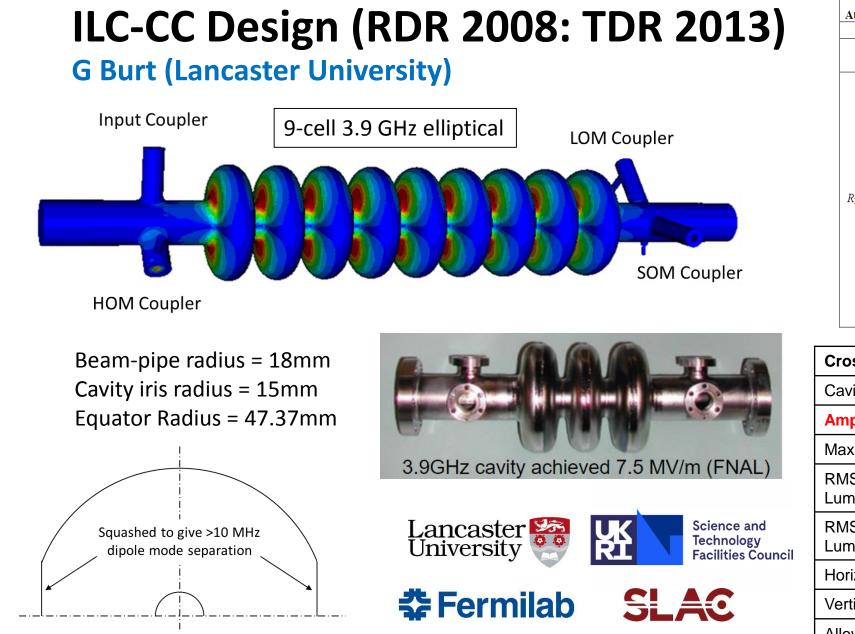
	Work package	Items	Quantity
		Decision of installation location with cryogenics/RF location	_
		accelerator tunnel	
		Design and development of prototype cavity/coupler/tune/CM including beam extraction line	-
		Cavity production, including cavities w/ He tank + mag. shield for	4
	Crab Cavity (CC)	CM, high-pressure gas regulation, EP/HT/Clean work, including VT	-
	for BDS	Coupler production including preparation/RF processing	4
	readiness (excluding klystron, baking furnace, clean room)	4	
VVP-5	WP-3	Tuner production readiness	4
	# CC production: 4	CM production including High-pressure gas, vacuum vessel, cold-	1
	# CC-CM production: 1	mass, and assembly (cavity-string, coupler/tuner, SCM, etc.)	_
		CM test including harmonized operation with two cavities	1
		CC-CM transport cage and shock damper	1
		CC-CM transport tests	1
		Infrastructure for CC and CM development and test (with each regional responsibility.)	-

Note: Above assumes preferred CC solution defined for Pre-Lab.

WP-3: Crab Cavity Workshop: 18th February 2021

Title	Speaker	Lab
Crab Cavity Workshop for ILC - Introduction	Kirk Yamamoto	КЕК
UK ILC Crab Design	Graeme Burt	Lancaster University
ILC Crab Cavities, First Thoughts	Rama Calaga	CERN
Crab Cavity R&D Activities at Old Dominion University and Jefferson Lab	Jean Delayen	ODU/JLab
QMIR Deflecting cavity for ILC	Vyacheslav Yakovlev	FNAL
Crab Cavity Effort at BNL	Binping Xiao	BNL
Discussions and Preparation for International Review	ALL	

Attendees:


S. Belomestnykh, P. Burrows, G. Burt, R. Calaga, J. Delayen, S. De Silva, D. Delikaris, A. Faus-Golfe, M. Harrison, A. Lankford, N.C. Lasheras, R. Laxdal, T. Luo, T. Markiewicz, P. McIntosh, S. Michizono, T. Nakada, S. Posen, B. Rimmer, K. Umemori, B. Xiao, V. Yakovlev, A. Yamamoto, K. Yamamoto.

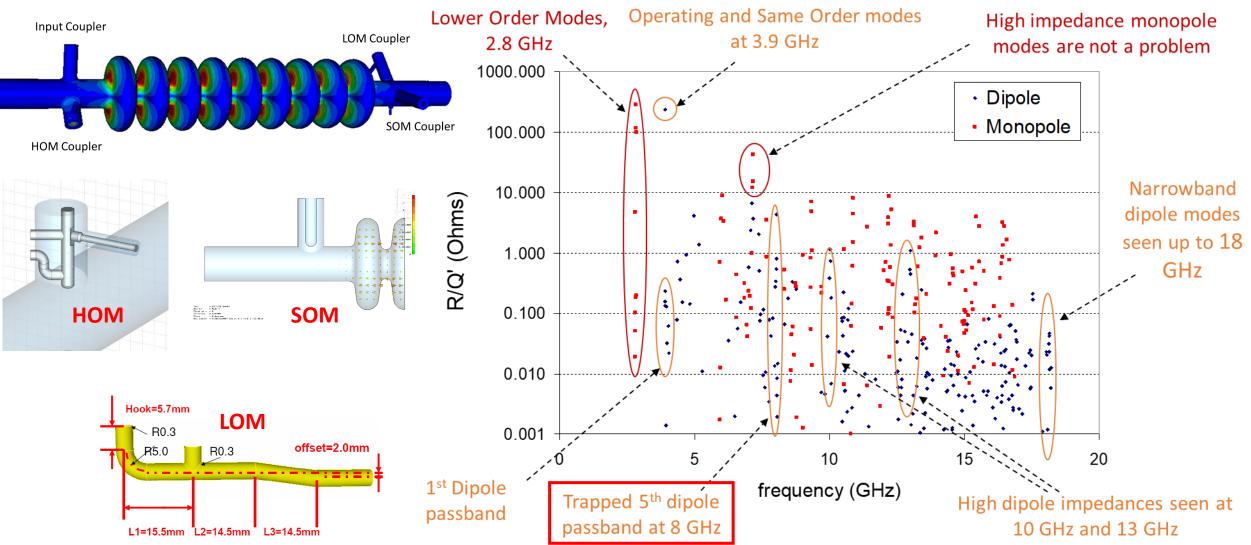
Development Groups:

BNL, CERN, FNAL, Jlab, Lancaster University, ODU, SLAC, TRIUMF, UKRI-STFC

https://agenda.linearcollider.org/event/9090/

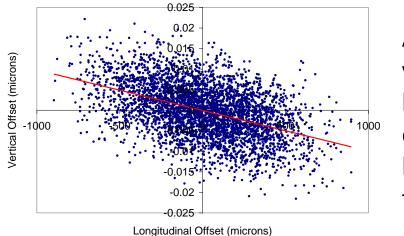
Nb: Larger polarisation separation feasible with racetrack solution.

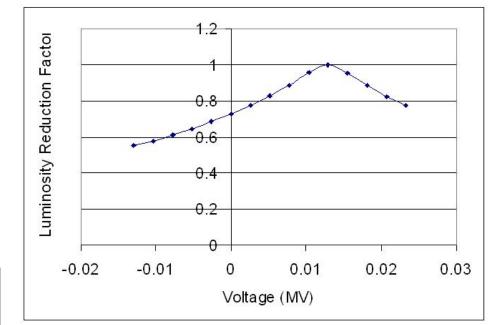
At 5MV/m P⊥:	
B _{MAX}	73 mT
E _{MAX}	16.6 MV/m
U	0.25 J
Q (Nb, room temp)	4780
$\binom{R}{Q}' = \frac{1}{2} \frac{\left V_L(r)\right ^2}{\omega U} \left(\frac{c}{\omega r}\right)^2$	235 Ω
$G = Q \times R_{\text{SURF}}$	225Ω
R _{BCS} (best measurement) @ 1.8K	$30 n\Omega$
R_0 (best measurement)	$40 \mathrm{n}\Omega$
<i>Q</i> @ 70nΩ1.8K	3.2 ×10 ⁹
Surface power @ 70nΩ	1.9 W


	ilr
•	· · · ·
	IIL

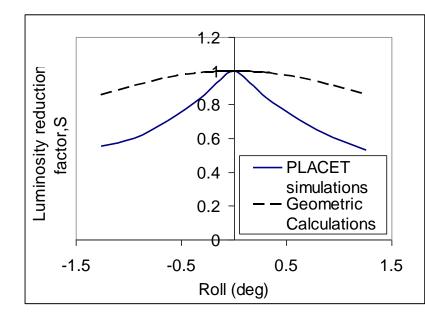
Crossing angle	14 mrad
Cavity frequency, GHz	3.9
Amplitude at 1TeV CoM, MV	2.6
Max amplitude with operational margin, MV	4.1
RMS relative phase stability for 2% rms Luminosity drop	0.094°
RMS amplitude stability for 2% rms Luminosity drop	6.6%
Horizontal beam clearance, mm	15
Vertical beam clearance, mm	10
Allowable X beam jitter at crab cavity, μm	500
Allowable Y beam jitter at crab cavity, μm	35

Modal Calculations in MAFIA


G Burt (Lancaster University)



Cavity Alignment (Anti-crabbing) G Burt (Lancaster University)



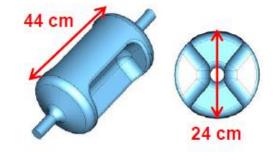
As we vary the anti-crab cavity voltage we can see the luminosity increasing back to the optimum value. 100% of the luminosity can be recovered in this way.

If the cavity has a roll misalignment it will cause a small crossing angle in the vertical plane.

This will significantly reduce the luminosity.

As we only require 10's kV this can be performed with a normal conducting cavity.

ODU/Jlab RF Dipole (RFD) Developments

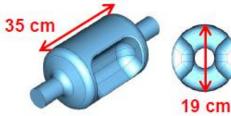


J Delayen (ODU/Jlab)

Proof-of-principle cavities

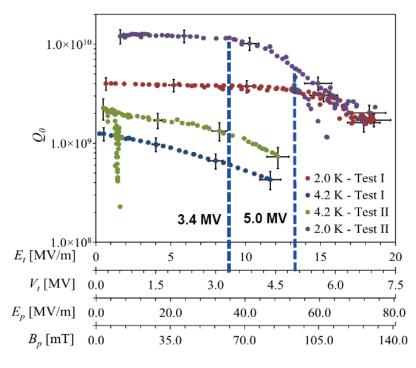
Frequency	499.0	400.0	750.0	MHz
Aperture Diameter (d)	40.0	84.0	60.0	mm
d/(λ/2)	0.133	0.224	0.3	
LOM	None	None	None	MHz
Nearest HOM	777.0	589.5	1062.5	MHz
E_p^*	2.86	3.9	4.29	MV/m
B_p^*	4.38	7.13	9.3	mT
B_p^*/E_p^*	1.53	1.83	2.16	mT/ (MV/m)
$[R/Q]_T$	982.5	287.2	125.0	Ω
Geometrical Factor (G)	105.9	138.7	136.0	Ω
R _T R _S	1.0×10 ⁵	4.0×10 ⁴	1.7×10 ⁴	Ω^2
At $E_T^* = 1$ MV/m				

499 MHz Deflecting Cavity for Jefferson Lab 12 GeV Upgrade



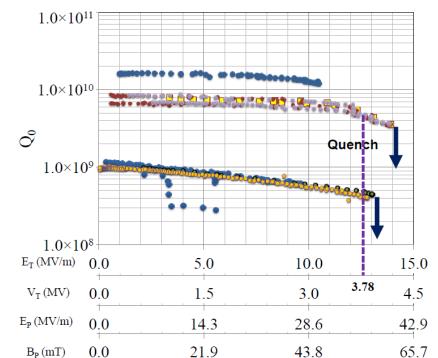
400 MHz Crabbing Cavity for LHC High Luminosity Upgrade

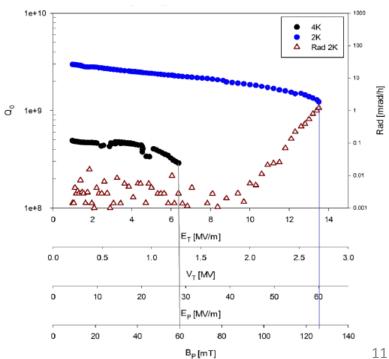
750 MHz Crabbing Cavity for MEIC at Jefferson Lab



RFD Cavity Tests

J Delayen (ODU/Jlab)

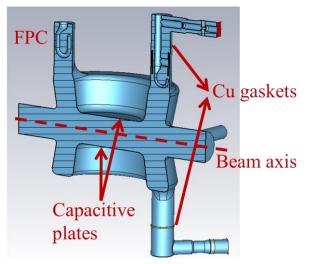


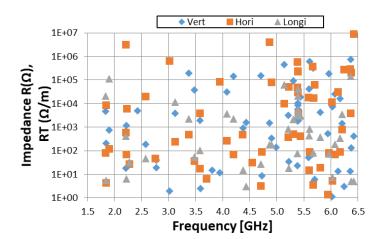

499 MHz Jlab Upgrade

750 MHz Jlab MEIC

1.3 GHz RFD Cavity

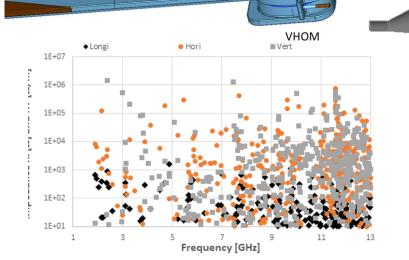
	Property	1-cell	2-cell
	Operating frequency [GHz]	1.3	1.3
	SOM [GHz]	-	1.188
	1 st HOM [GHz]	2.069	1.932
	$E_{\rm p}/E_{\rm t}^*$	4.45	4.57
	$B_p/E_t^* [mT/(MV/m)]$	9.09	8.92
	$B_p/E_p [mT/(MV/m)]$	2.04	1.95
	G [Ω]	142.5	147.3
	<i>R</i> /Q [Ω] (V ² /P)	182.2	370.7
	$R_{\rm t}R_{\rm s} \left[\Omega^2\right] \ (V^2/{\rm P})$	2.6×10 ⁴	5.5×10 ⁴
	Reference length V/E _t = $\lambda/2$ (mm)	11.54	11.54
	V _t [MV]	1.0	2.0
	E _p [MV/m]	38.58	39.66
	B _p [mT]	78.85	77.36
(
	Pole separation, beam aperture (mm)	36	36
	Cavity Length [mm]	172.32	297.4
	Cavity Diameter [mm]	128.6	114.5
(Pole Length [mm]	85	85

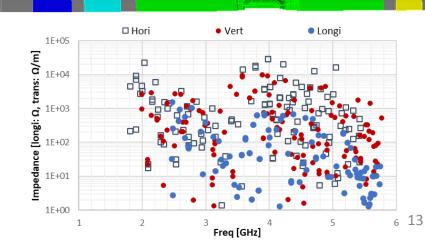

Page 26



BNL CCs Scaled for ILC at 1.3 GHz

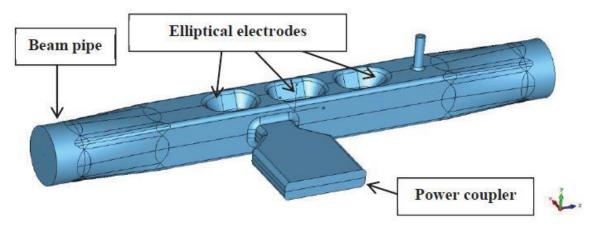
B Xiao (BNL) Double Quarter Wave (DQW) Wide Open Waveguide (WOW)


LHC DQW


LHC DQW	EIC DQW	EIC WOW
3 x coax (with filter)	1 x waveguide 1 x rect/coax	2 x SiC beampipe
25.8	15.2 (too small)	30.3
1.15	2	1.27
41.3	51.6	50.4
80	80	80
0.12	0.0016	0.0015
8.8	1.5	0.029
	3 x coax (with filter) 25.8 1.15 41.3 80 0.12	3 x coax (with filter)1 x waveguide 1 x rect/coax25.815.2 (too small)1.15241.351.680800.120.0016

EIC WOW (BNL/SLAC)

нном


EIC DQW

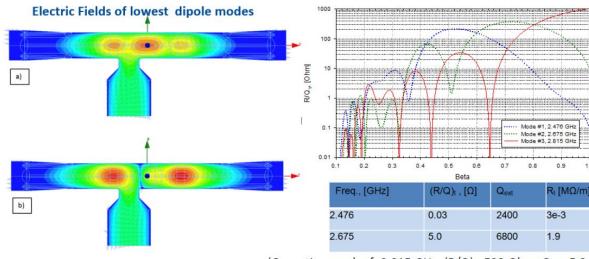
Quasi-Waveguide Multicell Deflecting Resonator (QMiR

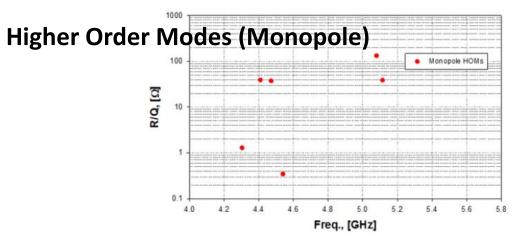
ANL/SPX:

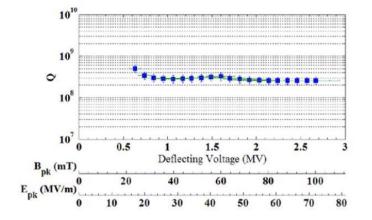
- No HOMs above cut off (5.2 GHz for monopoles and 4.2 GHz for dipoles).
- High (R/Q)_t
- Small loss factor, $k_{//}$ = 0.7 V/pC for σ_z = 10 mm.
- No MP up to 3 MV.
- No issues with thermal breakdown.

A. Lunin, I. Gonin, M. Awida, t. Khabiboulline, V. Yakovlev, A. Zholents, Physics Procedia 79 (2015) 54-62

Freq	2815 MHz
V _{kick}	2 MV
E _{max}	54 MV/m
B _{max}	75 mT
(R/Q) _Y	521 Ω
G	130
Q _{ext}	5.3E5
P _{out}	7.2 kW
Length (excl SiC absorbers)	0.45 m


Note that "circuit" impedance definitions are used.




QMiR SOM/HOM Management

Same Order Mode (SOM)

⁽Operation mode: f=2.815 GHz, $(R/Q)_t$ =523 Ohm, Q_{ext} =5.3e5)

In the preliminary 2K cold tests of QMiR the measured deflecting voltage (2.7 MV) exceeded the design goal of 2.0 MV !

Freq., [GHz]	R/Q, [Ω]	Q	Rs, [MΩ x GHz]
4.304	1.3	55	3E-4
4.409	39	530	0.09
4.471	37	400	0.07
4.530	0.35	4900	8E-3
5.080	132	390	0.26
5.114	39	108	0.02

Cavity is HOM-free above at f > 5.2 GHz

QMiR Scaled for ILC

V Yakovlev (FNAL)

Loss Factor:

- $k_{\prime\prime}$ ~ 1/ $\sigma\,$ and for σ = 0.3mm, $k_{\prime\prime}$ = 45 V/pC or ~3 W radiated power
- Dissipated in beam channel, not in the cavity itself (50% each direction) Not an issue!

Cryo Losses:

- At 2K for N2-doped cavity would expect:
 - 2.6 GHz @ 0.135 MV: R_s = 30 nΩ, P_c = 0.6 mW
 3.9 GHz @ 0.9 MV: R_s = 68 n Ω, P_c = 0.6 mW

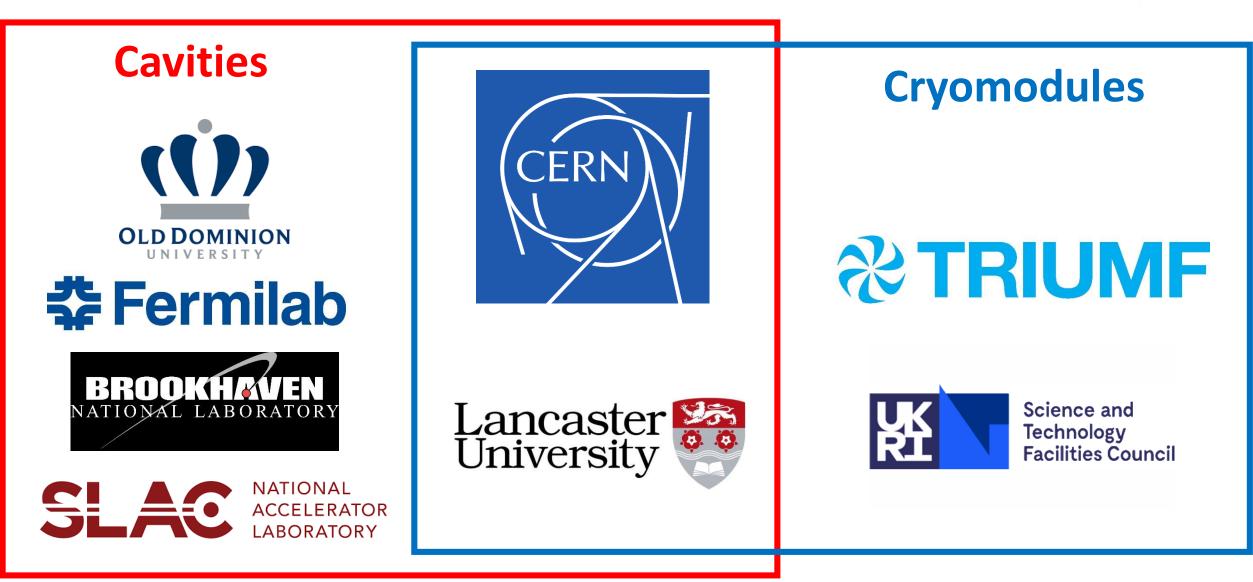
Surface Fields:

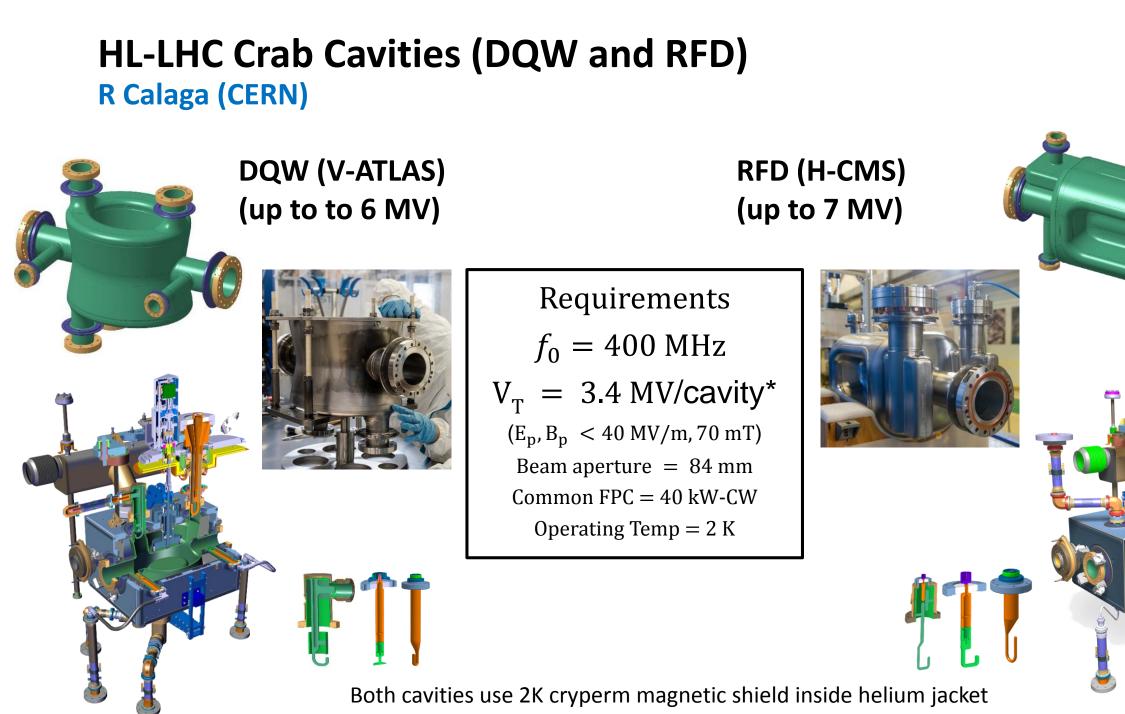
- For 2.8 GHz @ 0.9 MV, $E_p = 25$ MV/m and $B_p = 35$ mT
- Expect 3.9 GHz to be similar; as V~1/f and gap ~f (expect to be wider gap).
- Poles to be profiled for optimum EM-field parameters (known procedure)

Kick Factor:

• For ANL/SPX QMIR k_t = 0.5 V/pC/m; so for a 1 mm displacement, vertical kick ~ 1.6 V – Negligible

RF Power:


• For ILC: I_b of 5.8 mA and offset x = 1 mm, deflecting voltage (V) power $P_g = 2(kx)VI_b = 300 W$



Not an issue!

HL-LHC CC Global Collaboration

ijĻ

***RFD CAVITY ASSEMBLY** Length ~ 3m HILUM Cryogenio safety valve and pressure measurment in belium guard FPC LHCACEMIC **Tunor** Actuation LHCACFTU **RFD Cavity assem** Radio-Frequence wave guide "See detailed vie FSI system (2x 8 heads) For RF power autoby For CAVITY POSITION MEASUREMENT V-HOM tilte LHCACFHC H-HOM filter LHCACFHC Beam screen ALIGNMENT SYSTEM SUPPORT & ALIGNMENT OF CAVITIES LHCACEVS Hellum Tank EHCACFHT RFD Cavity Upper Cryogenic line LHCACF0C0149 (EDM5 1833681) Tuner Frame LHCACFCA LHCACFTU Cold magnetic shield **Pick Up Antenna** Cryophy @ - LHCACFCM LHCACFPU um Vesse LHCACFVT DQW CM test in SPS (2018) HOM extraction lines (x4) Coaxial line 25/60 ohms Beam vaccum gate valv with RF insert Cold/Warm Transition L See EDMS 1759896 & 1750 Lower oryogenio line Alignment jacks (x3) LHC PSt dealen SPS version only Information about RFD **Overall dimension** Mass : ~3900kg (bernal screen 50k Cavities : RFD (2x DICACETS HOM filters : 4 pc netic shiel LHCACFWM - Pick Up Antenna MLI "warm" (50K) Tuner : 2 unit (1 p FSI system (2x 8 heads) LHCACFTS (preliminary design for illustration) For CAVITY DOSITION MEASUDEMENT RF Gate valves : 4 FSI Heads : 16 po -LHC-WP04—CRAB CAVITIES RFD CRYOMODULE FOR SPS TESTS HOM lines (green), alignment (magenta)

HL-LHC Crab Cavity Cryomodule (RFD) R Calaga (CERN)

ILC CC Workshop Discussion/Questions

- Expected noise sources.
- IR optics configuration and impact on CC's.
- Beam dynamics impacts; bunch-by-bunch, bunch trains etc.
- Luminosity performance and expected tolerances cavity roll and appropriate mitigation. **CC Solution:**
- HOM damping and impedance requirements.
- Manufacturing simplification by direct machining from Nb ingot.
- Cryomodule integration options main linac compatible or top-loaded (i.e. HL-LHC).
- Energy upgrade provisions, impact on 250Gev CC solution space, modularisation etc
 Pre-Lab Planning:
- R&D, prototyping and CC down-selection process how/when.
- Collective contributions and expectations for Pre-Lab activities.
- Realistic scope, timescales and responsibilities for the Pre-Lab phase.

Science and Technology Facilities Council

Discussion points for next session!

Refined CC specifications?

Conclusions

- Various CC technology solutions feasible for ILC:
 - Elliptical ILC (RDR and TDR)
 - DQW EIC, HL-LHC
 - RFD EIC, HL-LHC, Jlab Upgrade, JLEIC and MEIC
 - QMIR SPX
 - WOW EIC

Science and

Technology

Facilities Council

- Significant alternative CC developments since ILC TDR in 2013.
- Must note that the CC system is not as 'mature' as the Main Linac.
- A number of organisations identified as potential collaborators for ILC Pre-Lab phase for CC system developments.
- HL-LHC demonstrates highly effective collaborative approach for global CC technology development (SPS CC CM R&D and test 2018):
 - BNL, CERN, FNAL, Lancaster University, ODU/Jlab, SLAC, TRIUMF and UKRI-STFC.

ILC Pre-Lab has a strong possibility to follow this successful realisation!

MANY THANKS

Questions?

Science and Technology Facilities Counci