ILC電子ビームドライブ陽電子源におけるoff-crest加速条件でのビームローディング補償

Compensation of the transient beam-loading effect in the capture linac of E-Driven positron source

Masao KURIKI、Shun Konno, Tohru Takahashi, Zachary Liptack (Hiroshima U.) Tsunehiko Omori, Kaoru Yokoya, Junji Urakawa, Masafumi Fukuda (KEK)

Outline

Beam Loading Compensation for Off crest Acceleration of the Capture Linac

- Linear collider requires a large amount of electron and positron comparing to ring collider.
- In ILC E-Driven positron source, the positron is generated in a multi-bunch format, 66 bunches with 6.15 ns spacing.
- Positron rides initially on the deceleration phase and slips to the acceleration phase.
- The phase of the heavy beam loading is moving from $cos(\pi)$ to cos(0). It causes the voltage and phase variation of acceleration field.

CONTENTS

Overview of the capture linac of ILC E-Driven Positron Source

The capture linac is composed from APS standing wave cavities.

Beam Loading Compensation

Beam loading voltage for SW cavity with the offcrest acceleration and the compensation.

Linac tuning method

Consider an actual tuning method with lack of information.

Summary and conclusion

Overview of Capture linac

3 GeV 4.0 nC electron driver
19 mm W-Re rotating Target
37of L-Band SW (11cell APS) Linac
Chicane to remove electron
Booster: L and S-Band TW Linac
ECS (Energy Compressor Section)

Parameter	Numb er	Unit
Frequency	1300	MHz
Shunt Impedance	31.5	MΩ/m
Aperture (2a)	60	mm
Q Value	24970	
Length	1.27	m
RF power	22.5	MW

Positrons are placed at the deceleration phase and captured at the acceleration phase by slippage.

Positrons are handled as 66 multi-bunch format with 6.15 ns spacing.

Detail of the capture simulation: H. Nagoshi, et al., NIMA(953)163134(2020)

APS cavity property: Next talk by S. Konno

Beam Loading Compensation

Transient property of SW cavity (Single cell model)

Acceleration field by RF input

V = EL

Energy Conservation

$$\frac{dW}{dt} = P_{in} - P_r - P - IV$$

By voltage,

$$W = \frac{Q}{\omega R} V^2, \qquad P = \frac{V^2}{R}$$

$$P_{in} = \frac{\beta V^2}{R}, P_r = \frac{\beta (V_{in} - V)^2}{R}$$

$$\frac{dV}{dt} = -\frac{(1+\beta)\omega}{20} V + \frac{\omega}{0} \sqrt{\beta RP}$$

$$V(t=0)=0, P=P_ou(t), I=I_0u(t-t_b),$$

 $u(t)$: step function

$$V(t) = \frac{2\sqrt{\beta P_o R}}{1+\beta} \left(1 - e^{-\frac{t}{\tau}}\right) - \frac{RI_B}{1+\beta} \left(1 - e^{-\frac{t-t_b}{\tau}}\right)$$
$$\tau = 2Q/(1+\beta)\omega$$

Beam Loading Compensation

On crest acceleration

$$V(t) = \frac{2\sqrt{\beta P_o R}}{1+\beta} \left(1 - e^{-\frac{t}{\tau}}\right) e^{i\omega t} - \frac{\omega R I_{B0}}{1+\beta} \left(1 - e^{-\frac{t-t_b}{\tau}}\right) e^{i\omega t}$$

$$V = EL$$

Beam Loading Compensataion: Off crest

Off crest acceleration with a phase θ ,

$$V(t) = \frac{2\sqrt{\beta PrL}}{1+\beta} \left(1 - e^{-\frac{t}{T}}\right) e^{i\omega t}$$
$$-\frac{IrL}{1+\beta} \left(1 - e^{-\frac{t-t_b}{T}}\right) e^{i(\omega t + \theta)}$$

The phase is varied over the pulse. The phase should be controlled for the compensation.

RF input Phase Modulation

Acceleration voltage of the off-crest acceleration with phase q,

$$\mathbf{V}(\mathbf{t}) = V_0 \left(1 - e^{-\frac{t}{\tau}}\right) \cos \omega t - V_{b0} \left(1 - e^{-\frac{t - t_b}{\tau}}\right) \cos(\omega t + \theta)$$

The voltage and phase are varied, even the envelope is matched. To cancel the beam loading voltage, the RF input voltage has to be,

$$V_{RF}(t) = V_{10}\cos\omega t + V_{b0}\left(1 - e^{-\frac{t - t_b}{\tau}}\right)\cos(\omega t + \theta)$$

In this case, $V(t) = V_{10} \cos \omega t$. $V_{RF}(t)$ is rewritten as

$$V_{RF}(t) = \sqrt{A^2 + B^2} \cos(\omega t + \varsigma)$$

$$V_2 = V_{b0} \left(1 - e^{-\frac{t - t_b}{\tau}}\right)$$

$$A = V_{10} + V_2 \cos \theta$$

$$B = V_2 \sin \theta$$

$$\varsigma = \tan^{-1} B/A$$

$$V(t) = \sqrt{A^2 + B^2} \cos(\omega t + \varsigma)$$

The asymptotic value of the envelope has to be equal to the envelope of the input RF as

$$\lim_{t \to \infty} \sqrt{A^2 + B^2} = \frac{2\sqrt{\beta P_o R}}{1 + \beta} = V_0$$

 V_{10} (Voltage at the first bunch) is obtained as

$$V_{10}^{2} + 2V_{b0}\cos\theta V_{10} + V_{b0}^{2} - V_{0}^{2} = 0$$

$$V_{10} = -V_{b0}\cos\theta + \sqrt{V_{0}^{2} + V_{b0}^{2}(\cos\theta^{2} - 1)}$$

Time to start the beam acceleration t_h is

$$t_b = -T_0 \ln \left(1 - \frac{V_{10}}{V_0} \right)$$

$$V(t) = V_0 \left(1 - e^{-\frac{t}{\tau}} \right) \cos(\omega t + \varsigma)$$

$$\zeta = \begin{cases} 0 & (t < t_b) \\ \tan^{-1} \frac{V_2 \sin \theta}{V_{10} + V_2 \cos \theta} & (t > t_b) \end{cases}$$

APS cavity $\pi/2$ mode SW

$$r_{sh} = 31.5 \frac{M\Omega}{m}$$
 $Q_0 = 25000$
 $\beta = 5.0$
 $P_{RF} = 22.5 \text{ MW}$

Linac Tuning

Beam profile at the capture linac

- Positrons and electrons are initially placed at cos(-p), Ez<0 phase.
- Positrons moved to the acceleration phase by slippage.
- Beamloading current is initially zero, and increased up to <2A.
- GEANT for particle generation
 (Bremsstralung + pair-creation), GPT for particle tracking in the capture linac, BL is evaluated by a C program.

Positron yield evaluation

- After the capture linac, chicane, booster, and ECS are simulated as a linear transformation.
- Chicane $(R_{56}=0.053)$, Booster (L and S-band acceleration), ECS $(R_{56}=-0.90, R_{56}=1.14)$.
- Phase space distribution (z, δ) is examined with the dynamic aperture of DR as

$$\frac{z^2}{0.035^2} + \frac{\delta^2}{0.0075^2} < 1$$

$$\eta = \frac{\# of \ e + in \ aperture}{\# of \ electron \ on \ target \ (1000)}$$

Transverse acceptance, beam loss after the chicane is not considered.

Global phase modulation

- Assumptions
 - Beam loading current is average over the linac.
 - We assume a global phase.

- ullet δ and σ_z are improved.
- The yield over the pulse (66 bunches) is uniform with the optimum phase modulation.
- The tuning parameters for the beam loading compensations are only two: phase and current.

Summary

- Beam loading compensation for the off-crest acceleration of SW cavity is considered.
- A simple envelop adjustment by the timing does not work.
- The timing adjustment with PM works well.
- The linac tuning for the beam loading compensation is possible only with a couple of global parameters, current and phase.
- In this method, we treat the cavity as a single cell.
- Effect of the cell couplings is discussed in the next Konno's presentation.

THANK YOU!

Any Questions?