

Updates on yield optimisation for CLIC and FCC–ee positron sources

Yongke Zhao

Shandong University & CERN

On behalf of the CLIC and FCC-ee positron source teams

LCWS2021, 16/03/2021

Introduction

- Optimisation strategy
- Preliminary results
- Conclusions

Yongke Zhao

Introduction

CLIC positron source:

• E-gun \rightarrow Target \rightarrow AMD \rightarrow TW structures \rightarrow Injector linac \rightarrow (PDR)

(e+ production) (e+ capture & acceleration)

FCC-ee positron source: (quite similar with CLIC)

• E-gun \rightarrow Target \rightarrow AMD \rightarrow TW structures \rightarrow Injector linac \rightarrow (DR)

Figures of merit

- Accepted positron yield: Number of e+ (accepted by yield_{e+} = $\frac{n_{e+}^{\text{produced}}}{n_{e-}^{\text{primary}}}$
- PEDD: Peak Energy Deposition Density (in target), < 35 J/g</p>

Beam and target

- Electron beam hitting on target following gaussian distribution
 - Free parameters: <u>energy</u>, <u>spot size</u> (rms), <u>emittance</u>, <u>etc</u>.
- Two target schemes studied
- A hybrid target scheme:
 - Crystal W + Magnet + Amorphous W
- A conventional target scheme:
 - A single amorphous W
- Target free parameters:
 - Thicknesses
 - Distance

CLIC CDR target design

For CLIC, hybrid target not used, since it was found to be not necessary

Adiabatic Matching Device (AMD)

Field map obtained in different ways:

Analytic formula (used for CLIC)

Linear fringe: Bz = K * (Z - 5 mm) + B0, K = 0.5 T/mm

Flux Concentrator (FC) simulations:

- Modified SLAC-like FC (used for CLIC)
 - linear / non-linear shaped aperture
 - designed and simulated by <u>Hugo Bajas</u> (with Opera-2d)
- FC + NC solenoid (used for FCC-ee)
 - designed and simulated by <u>Pavel Martyshkin</u>
- HTS solenoid simulation (used for FCC-ee)
 - A High-Temperature Superconductor (HTS)
 - easily to achieve strong magnetic field to capture positrons
 - designed and simulated by <u>PSI</u> magnet group

Hugo's AMD designs

FC with linear aperture Peak (B0) is floated (scaled from below fields) in optimisation

 has the advantage of larger positron yield, but also requires larger power supply and forces which might cause damage

Voltage & Force			
U total	7.18 kV		
U internal max	79.6 V		
Fz turn 1	-2.39 kN		
Fr turn 1	4.30 kN		
F turn1	4.92 kN		

FC with non-linear aperture

- has the advantage of reduced power supply, voltages and forces, but also has reduced positron yield
- might give a PEDD beyond the 35 J/g limit (but PEDD can be reduced with larger spot size, which also affects the yield)

Pavel's AMD designs

FC with smaller aperture

- has the advantage of higher field peak
- FC peak field: 7 T
- DC solenoid field: 0.5 T (constant)
- 3D field map used

Front gap	Length	End gap	Ri1	Ri2
3 mm	74 mm	36 mm	4 mm	22 mm

FC with larger aperture

- has the advantage of larger aperture
- FC peak field: 5 T
- DC solenoid field: 0.5 T (constant)
- 3D field map used

Front gap	Length	End gap	Ri1	Ri2
3 mm	100 mm	40 mm	8 mm	31.5 mm

On-axis Bz field (larger aperture)

• Consistent performance observed (<10%) compared with <u>Hugo</u>'s FC design at similar peak field

LCWS2021: CLIC and FCC-ee positron source optimisations

Aperture is linear

PSI HTS solenoid as AMD

- Fringe field (z < 0) neglected in optimisation, since final results affected not much (~3%)
- Analytic formula (the one above) used in optimisation, with <u>B0</u> being floated
- u and length are estimated (from existed designs with B0 = 7 T and 10 T) and fixed for different B0

Yongke Zhao

Travelling wave (TW) structures

- L-band used as pre-injector linac in optimisation (as the yield of S-band found to be smaller)
 - L-band configuration
 - Working mode: 2π/3, frequency: 2 GHz, NC solenoid: 0.5 T*
 - Number of structures: 1 dec. + 10 acc.
 - Structure length: 1.5 m, distance: 0.2 m*, aperture: R = 20 mm

Phases and gradients optimised separately, such that yield is maximum, with the energy at the exit as close to 200 MeV as possible

- * If technically allowed, a higher field was found to achieve larger yield (e.g. improved ~25% with 0.8 T)
- * If technically allowed, the first distance can be reduced to achieve larger yield

Injector linac

- Injector linac is supposed to accelerate positrons to 2.86 GeV (CLIC) or 1.54 GeV (FCC-ee)
- In optimisation, analytic formula used (for CLIC and FCC-ee)

 $E = E_0 + \Delta E \cdot \cos(2\pi\omega \cdot \Delta t), \ \Delta E = 2.86 \, GeV - 200 \, MeV, \ \Delta t = t - t_{ref}$

For CLIC, injector linac is also simulated using the existed design from <u>Cafer Bayar</u>

Optimisation strategy

For the free parameters, it is not realistic to scan in the full space

Simulation time and storage space not allowed

Procedure of optimisation algorithm

- ① **Default** parameters are necessary, to start with
- ② Then scan only one parameter at a time, with the other parameters fixed to the default
- ③ Change the default and do scan **iteratively**, until all parameters are optimised

Discriminant variables as figure of merit

- ✓ Accepted positron yield
- ✓ PEDD
- Primary beam power (used for different primary energies, proportional to cost)
- ✓ Deposited power in target, etc.

Example of the algorithm

More in [CLIC-Note-1165]

Beam parameters

Beam parameters used in simulation

• Parameters in red color are free parameters and already optimised

Boam paramotors		CLIC (all stages)			Unit
De	am parameters	380 GeV	1.5 (3) TeV	FCC-ee	Unit
	Energy		5	6	GeV
	Spot size (rms)	Floated (depending on AN	/ID used)	mm
	Bunch length (rms)		1	1	mm
Drimon	Emittance		80	_	mm∙mrad
Primary e-	Energy spread (rms)	0.1		0.1	%
	Divergence (rms)	-		0.01	mrad
	Nb of bunches / pulse	352	312	25	
	Repetition rate	50		100	Hz
	Bunch charge	5.2E+09	3.7E+09	2.1E+10	e+
	Safety margin	20		100	%
e+ accepted by PDR (DR)	Energy acceptance (±)	1.20		3.80	%
	Time window (total)	19.8		9.33	mm
	Energy required		2.86	1.54	GeV

Optimised parameters (CLIC)

Free parameters optimised for different AMD options

Analytic AMD

Parameter	380 GeV	3 TeV	
Electron energy	5 G	ieV	
Spot size	2.2 mm	1.5 mm	
Emittance	80 mm	n.mrad	
Amor. thickness	18	nm	
Target-AMD gap	2 mm		
AMD peak Bz	6 T		
AMD length	22 cm		
AMD entr. radius	8 mm		
AMD-TW gap	50 mm		
TW dec. gradient	13 MV/m		
TW acc. gradient	17 MV/m		

Simulated AMD with linear / non-linear apertures

Parameter	380 GeV	3 TeV	
Electron energy	5 GeV		
Spot size	2.3 mm	1.5 mm	
Emittance	80 mm.mrad		
Amor. thickness	18 mm		
Target-AMD gap	2 mm		
AMD peak Bz	6 Т		
AMD-TW gap	50 mm		
TW dec. gradient	20 MV/m		
TW acc. gradient	19 N	1V/m	

Parameter	380 GeV	3 TeV	
Electron energy	5 GeV		
Spot size	2.8 mm 1.8 mm		
Emittance	80 mm.mrad		
Amor. thickness	17 mm		
Target-AMD gap	2 mm		
AMD peak Bz	3.5 T 4 T		
AMD-TW gap	50 mm		
TW dec. gradient	20 MV/m		
TW acc. gradient	20 MV/m		

Final optimisation scan of AMD peak field (380 GeV)

* 6 T is the maximum allowed (technical limitations) in our study, though yield can benefit from higher field

Yongke Zhao

Optimised parameters (FCC–ee)

Free parameters optimised for different cases

Hybrid target scheme (with FC as AMD)

Parameters	FC as	Unit	
r drumeters	Ri = 4	Ri = 8	mm
Primary energy	6		GeV
Spot size	1.5	1.3	mm
Crystal thickness	1.8		mm
Distance	0		m
Amorphous thickness	4.	5	X ₀

Conventional target scheme (with FC as AMD)

Parameters	FC as	Unit	
r arameters	Ri = 4 Ri = 8		mm
Primary energy	6 (4)		GeV
Spot size	1.5	1.3	mm
Amorphous thickness	5.0		X ₀

energy scan

Conventional target scheme (with HTS as AMD)

Parameters	HTS as AMD	Unit
Primary energy	6 (4)	GeV
Spot size	1.0	mm
Amorphous thickness	5.0	X ₀
B0 (z = 0)	15 (12)	Т
Bz @ Target exit (z = 8 mm)	6.6 (5.7)	Т

B0 [T]

Yongke Zhao

Preliminary results

Results for CLIC and FCC-ee

- Injector linac simulated (with PLACET) for CLIC
- Powers and PEDD always normalised to required e+ bunch charge by accepted yield

Differe	ent AMD options	Accepted yield	e ⁻ beam power [kW]	PEDD [J/g]
	Analytic AMD	2.15	40.8	32.2
	Linear FC	1.91	45.9	33.0
@ 300Gev	Non-linear FC	1.31	67.2	33.5
	Analytic AMD	2.50	22.2	31.7
CLIC @ 1.5 (3) TeV Non–linear FC	2.42	22.9	32.7	
	Non-linear FC	1.76	31.4	32.5
FCC-ee	Small aperture FC	2.29	44.1	32.3
@ Hybrid target	Large aperture FC	2.83	35.7	33.3
500	Small aperture FC	2.19	45.9	32.3
FCC-ee @ Conventional	Large aperture FC	2.67 (1.88)	37.7 (35.8*)	32.4 (33.1)
target	HTS as AMD	4.10 (2.88)	24.6 (23.3*)	30.9 (30.6)

* For FCC-ee, primary energy fixed at 6 GeV (baseline). But 4 GeV is found to reduce beam power by 5%

Yongke Zhao

Preliminary results

Positron production and capture efficiencies

CLIC, 380 GeV Linear FC as AMD	Target	AMD	TW structures	PDR accepted
e+ Yield	11.6	7.67	2.45	1.91
Efficiency	11.0	66%	32%	78%

Spot size: 2.3 mm R_AMD: 6.5-55 mm

CLIC, 3 TeV Linear FC as AMD	Target	AMD	TW structures	PDR accepted
e+ Yield	11 5	8.15	3.00	2.42
Efficiency	11.5	71%	37%	81%

Spot size: 1.5 mm

R_AMD: 6.5-43 mm

FCC-ee Large aperture FC	Target	AMD	TW structures	DR accepted
e+ Yield	127	10.3	3.54	2.67
Efficiency	13.7	76%	34%	75%
	1			
FCC-ee HTS as AMD	Target	AMD	TW structures	DR accepted
FCC-ee HTS as AMD e+ Yield	Target	AMD 9.09	TW structures 5.29	DR accepted 4.10

Spot size: 1.3 mm R_AMD: 8-32 mm

Spot size: 1.0 mm R_AMD: 20 mm

Positron capture efficiency mainly affected by <u>spot size</u> and <u>AMD aperture</u>

Yongke Zhao

Conclusions

- CLIC and FCC-ee positron sources optimised for different AMD options
- Preliminary simulation and optimised results presented

CLIC:

- FC with linear aperture achieves a maximised yield of 2.42 e+/e-. A factor of 2.4 (6.0) of Project Implementation Plan (CDR) baseline results
- A non-linear FC has reduced yield (~30%) but benefits from lower voltage and forces

FCC-ee:

- Hybrid target achieves maximised yield only when distance between crystal and amorphous is 0. Yield (optimised) for hybrid target is ~6% higher than conventional target. More (radiation, thermal load, etc.) to be considered in the optimisation
- For conventional target, the primary e- beam power can be ~5% lower if energy reduced from 6 GeV to 4 GeV, but 6 GeV is anyway necessary for the current injector layout
- FC with a larger aperture behaves better than a small aperture, with higher yield (> 20%), with a yield of 2.67 e+/e-. A factor of 2.6 of the baseline result
- Compared to FC, an optimised HTS solenoid can improve the yield by ~50%, with a yield of 4.10 e+/e-, and Bz at target exit being ~6 T

Yongke Zhao

Analytic AMD

• K factor effects on the results (380 GeV):

Bz = K * (Z - 5 mm) + B0, K = 0.5 T/mm, B0 = 6 T

K	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Yield	2.39	2.32	2.26	2.23	2.18	2.09	2.07	1.98	1.91
Diff.	10%	6%	4%	2%	-	4%	5%	9%	12%

• Change of K in a reasonable range does not affect the results much. Expected difference in reality < 5%

Analytic AMD

- Field peak chosen at Z0 = 5 mm based on the following facts:
 - SLAC SLC AMD filed peak was around z = 5mm
 - Opera AMD field peak from Hugo found to be always around z = 5 mm, **independent** of number of turns, turn gap, current, frequency, inner aperture size and shape

Hugo's AMD designs

FC with linear aperture

Rentrance [mm]	R _{exit} [mm]	R _{outer} [mm]	D _{coil} [mm]	Gap [mm]	I _{peak} [kA]	f [kHz]
6.50	55.45	60	8.33	0.8	13.8	25

FC with non-linear aperture

Rentrance [mm]	R _{exit} [mm]	R _{outer} [mm]	D _{coil} [mm]	Gap [mm]	I _{peak} [kA]	f [kHz]
6.52	43.22	60	8.33	0.8	13.8	25

Pavel's AMD dsigns

- Current profile is a half of sine with a pulse length of 25 μs
- Peak current is ~ 20 kA (peak field is 7 Tesla)
- Gap between coil turns is 0.4 mm
- Gap between coil and FC body is 1 mm
- Turns size is 9.6x14 mm

- Target (W74Re26) diameter is 90 mm, thickness is 15.8 mm
- Gap between target and FC front face is 2mm

Preliminary results (CLIC)

Optimised results

- Injector linac: analytic (Placet simulation can give the same yields as the analytic does)
- Results (normalised to required e+ bunch charge)

Results	Analytic AMD		Opera AMD linear shaped		Opera AMD non-linear shaped	
	380 GeV	3 TeV	380 GeV	3 TeV	380 GeV	3 TeV
Accepted yield	2.15	2.50	1.91	2.42	1.31	1.76
PEDD [J/g]	32.2	31.7	33.0	32.7	33.5	32.5
Beam power [kW]	40.8	22.2	45.9	22.9	67.2	31.4
Deposited power [kW]	11.2	6.1	12.6	6.3	16.3	7.7
E_mean @ TW exit [MeV]	202	201	199	199	202	198
E_spread @ TW exit	13%	13%	21%	21%	23%	23%
Accepted E_mean [GeV]	2.860	2.860	2.860	2.860	2.860	2.860

Yongke Zhao

Preliminary results (FCC-ee)

Optimised results

Hybrid target scheme

• For AMD with a small aperture

Results with optimised parameters	Values	Unit
Accepted yield	2.29	e+/e-
Normalised PEDD	32.3	J/g
Normalised beam power	44.1	kW
Normalised deposited power	15.0	kW

• For AMD with a large aperture

Results with optimised parameters	Values	Unit
Accepted yield	2.83	e+/e-
Normalised PEDD	33.3	J/g
Normalised beam power	35.7	kW
Normalised deposited power	12.2	kW

HTS solenoid as AMD

Conventional target scheme

• For AMD with a small aperture

Results with optimised parameters	Values	Unit
Accepted yield	2.19	e+/e-
Normalised PEDD	32.3	J/g
Normalised beam power	45.9	kW
Normalised deposited power	11.1	kW

• For AMD with a large aperture

Results with optimised parameters	Values	Unit
Accepted yield	2.67	e+/e-
Normalised PEDD	32.4	J/g
Normalised beam power	37.7	kW
Normalised deposited power	9.12	kW

e- energy	Accepted yield	Beam power [kW]	PEDD [J/g]	Deposited power [kW]
4 GeV	2.88	23.3	30.6	6.56
6 GeV	4.10	24.6	30.9	5.98

Yongke Zhao

Preliminary results (FCC-ee)

Optimised results

Conventional target scheme

- For AMD with a large aperture
- At injector linac (analytic) exit, as well as acceptance window

spot size: 1.3 mm

Optimisation scan plots (CLIC, 380 GeV)

Analytic AMD

Scan of <u>spot size</u>, <u>AMD aperture</u>

Optimisation scan plots (CLIC, 380 GeV)

FC with linear aperture

Scan of primary e⁻ energy, distance between target and AMD, distance between AMD and TW

Comparison with old results (CLIC)

Comparison with previous results

- Stage: 1.5 (3) TeV Primary e- energy: 5 GeV
- Previous results recalculated by removing 25% yield over-estimation due to old AMD aperture simulation
- PEDD in old results re-normalised to updated bunch charge

Results	Spot size	Distance betw. targets	Final eff. e+ yield	PEDD [J/g]	
CDR (2012)	2.5 mm	2 m	0.31	38.8	_
Implementary plan report (2018)	2.5 mm	2 m	0.78	15.6	
	1.05 mm	0.65 m	1.55	29.0	_
	1.25 mm	0	2.78	35.0	(my test)
Yongke (2020)	1.7 mm	0	2.22	31.2	
Yongke (2021)	1.5 mm	_	2.50	31.7	_

The yield improved significantly in my results mainly due to the constraint on the distance between hybrid targets is removed (as confirmed by the test)

Yongke Zhao