

Nanobeam Technologies

1 FEBRUARY- 3 FEBRUARY

https://indico.cern.ch/event/980103

Motivation

In the coming years "nanobeams" will be a priority area – for CLIC and many other existing and future projects

... more from other Higgs factories, and other accelerators with similar challenges, other technologies

We hope the workshop will be a success – and will consider to make it annual

We also hope it will increase knowledge exchange and foster further collaboration in this area S. Stapnes

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	$f_{\rm rep}$	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$ au_{ m RF}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	1.4	2
Total integrated luminosity per year	$\mathscr{L}_{\mathrm{int}}$	fb^{-1}	180	444	708
Main linac tunnel length		km	11.4	29.0	50.1
Number of particles per bunch	Ν	109	5.2	3.7	3.7
Bunch length	σ	μm	70	44	44
IP beam size	σ_x / σ_y	nm	149/2.9	$\sim 60/1.5$	$\sim 40/1$
Normalised emittance (end of linac)	ϵ_x/ϵ_y	THE STATE	900/20	660/20	660/20
Final RMS energy spread	-	%	0.35	0.35	0.35
Crossing angle (at IP)		mrad	16.5	20	20

Participants

- 168 registered participants from 47 Institutions
- 31 talks for around 10 hours..
- Apologies to you and the speakers for flying over the slides...

Program and organization team

- Nuria Catalan-Lasheras
- Angeles Faus-Golfe
- Thibaut Lefevre
- Helene Mainaud-Durand
- Yannis Papaphilippou
- Nobuhiro Terunuma

		Weasuning remosecond built
ics Ian-	Welcome and introduction	Steinar Stapnes
(nam Cata	Beam dynamics tolerances for Rings.	Yannis Papaphilippou
ir: N. ir: N.	Beam dynamics tolerances for FELs and Linear colliders.	Andrea Latina
Bei (Cha	Jitter control and Feedback (IP, DB).	Philippe Burrows
	Break	
-SL	Permanent adjustable Magnets	Ben Shepard
A. Fai	SC Low-beta magnets	Brett Parker
ts (Chair: / Golfe)	High-field undulators/wigglers HTS	Daniel Schoerling
	Special magnets (ATF octupoles, skew sextupoles)	<u>M. Modena</u>
agne	High-field longitudinal gradient dipoles.	Manuel Dominguez
Σ	Crab cavities	<u>S. Verdu</u>

/Injection/Extracti

Ξ

nstrumentation (Chair

oility	a)	The PACMAN project results.	Helene Mainaud-Durand						
it and stab Terunum		Structured laser beam for alignment.	Jean-Christoph Gayde						
		Status MDI alignment.	Leonard Watrelot						
nmer	Chair:	Development of low-cost alignment systems.	<u>Mateusz Sosin</u>						
Alig	S	Girder stability LAPP	Gael Balik						
Break									
dn-	"Very thin" Non-Evaporable Getter coatings for particle acce	Pedro Costa Pinto							
wrap	. noa	Development of thin-walled copper electroformed vacuum of	Lucia Lain Amador						
and	uum and v (Chair: Papaphlip	Measuring conductivity of coated surfaces at high frequency	Andrea Pasarelli						
unna		Beam dynamics tolerances for next generation of accelerator	Daniel Schulte						
Vac		Workshop wrap-up	Nuria Catalan-Lasheras						

- Alexia Augier
- Grace Fern Jackson

Damping rings, radio-frequency, magnets, alignment, stabilization, Injection/extraction, vacuum and impedance, instrumentation

"Beam dynamics tolerances for Linear Colliders and FELs", A. Latina

1. Orbit correction

2. Dispersion-free / wakefield-free steering

Beam-based alignment tests at FACET@SLAC

- 3. RF alignment
- 4. Sextupoles

[Gohil, Burrows, Blaskovic, Latina, Ögren, Schulte, D.. (2020). Luminosity Performance of the Compact Linear Collider at 380 GeV with Static and Dynamic Imperfections. Phys. Rev. Accel. Beams 23, 101001]

"Beam dynamics tolerances for (Low Emittance) Rings", Y. Papaphilippou

(8) Low emittance rings workshops

- High-bunch brightness in all three dimensions
 - Intra-beam Scattering effect reduced by choice of ring energy, lattice design, wiggler technology, alignment tolerances
 - Electron cloud in e⁺ rings mitigated by chamber coatings and efficient photon absorption
 - Fast Ion Instability in the e⁻ rings reduced by low vacuum pressure and train gaps
 - **Space charge vertical tune-shift** limited by energy choice, reduced circumference, bunch length increase
 - Other collective instabilities controlled by low –impedance requirements on machine components
- Repetition rate and bunch structure
 - Fast damping times achieved with SC wigglers
 - RF frequency reduction @ 1GHz considered due to many challenges @ 2GHz (power source, high peak and average current, transient beam loading)
- Output emittance stability
 - Tight jitter tolerance driving kicker technology
- Positron beam dimensions from source
 - Pre-damping ring challenges (energy acceptance, dynamic aperture) solved with lattice design

"Beam Fast Jitter Control and Feedback", Ph. Burrows

Feedback On Nanosecond Timescales O(10-100ns)

Low latency ~150 ns

Bunch #

- IP FB and ground motion FF in ATF
- Phase FF in CTF3
- Wake-field effect reduction in ATF
- Simulations for CLIC 3TeV

"Kicker design with tight kick tolerances and Pulser with ultra-fast rise-time", M. Barnes

"Injection/extraction systems and methods for ultra-low emittance rings ", M. Aiba

Expected deflection from 8 sections*

"The HTS undulator and wiggler development", D. Schoerling

NbTi Wiggler design ad built. Under operation in ANKA/KARA

- the same a science on a science of white
- The presence of non-allowed harmonics, measured with beam, indicates an asymmetry of the wiggler. For a future CLIC damping ring, the manufacturing and assembly tolerances shall be revisited
- Nb3Ti Wiggler prototype, manufactured and tested

• New ideas, HTS development, helical, planar undulators...

• Combined function magnets: dipolar and quadrupolar field. Hyperbolic pole tip profiles

- Multiple backup solutions and adjustments implemented to achieve the desired field quality and specifications
- 98% of the pieces produced
- Remaining 2% already under production

A new version of these magnets will be used in the Elettra new upgrade!

"Development of a high-field longitudinal gradient dipole at CIEMAT", M. Dominguez

"Developments in Superconducting Final Focus Technology", B. Parker

"Adjustable permanent magnets", B. Shepherd

BO Spectrometer Multifunction Magnet Coils

"Special magnets", M. Modena

- 3D - rail only

Stretched wire

ali b 1. ..

Rotating coil

Hall probe

"Beam specifications impact on RF and LLRF design The CLIC Damping Rings LLRF", T. Mastoridis

- The system performance will greatly depend on the klystron frequency response and to a lesser extent on the measurement noise from the beam pickup and on the accurate and precise feedforward gain setting.
- The peak power requirements are strongly related to the instantaneous beam power, which is rather demanding and dominates the size and cost of the Damping Rings RF system.

"Power RF systems for low emittance rings", E. Jensen

- Crab crossing with **NANOBEAMS** in colliders requires careful study of:
 - Implications on required kick voltage (via β), frequency choice
 - HOM power, impedances (esp. short bunches)
 - Effects of detector solenoid
 - Demanding installation tolerances, RF noise control
 - Consider crab kissing, crab waist scheme

"Crab cavities for colliders." S. Verdú-Andrés

"X-band transverse deflection structure with variable polarisation", B. Marchetti

Collaboration between PSI, CERN and DESY on X-band technology

"Wakefield Monitors and Wakefield Mitigation", K. Sjobak

- Alignment of RF structures according to WFM measurements
- For CLIC luminosity target: Need <u>accuracy better than 3.5 μm</u>

"Overview of profile measurements for nanobeams", T. Lefevre

sub-micrometer resolution wire scanner

G. L. Orlandi et al., PRAB 23 (2020) 042802

"High resolution cavity BPMs: From prototype to production", A. Lyapin

- X-band LCLS-1 (36)
- 200nm precision
 - C-band commercial
 - RHUL- FMB Oxford
 - Digital electronics

"Measuring nanometer beam size at final focus", T. Okugi

Where is the center?

Compton scattering with a 532nm Considering an upgrade for ATF3 New laser and new crossing angle

"Non-invasive beam measurement using polarization radiation", P. Karataev

wavelength to time mapping

"Measuring femtosecond bunches using electro-optical techniques", S. Bielawski

(a)

laser

polarization

chirped laser pulse

CSR THz pulse

"Structured Laser Beam... towards an alignment system", J-C. Gayde

Structured Beam

Bessel Beam

Gaussian Beam

"The PACMAN project results", H. Mainaud-Durand.

"Machine detector interface alignment techniques for nanobeams machines", L. Watrelot

HL-LHC:

External and internal monitoring Using FSI Inclinometers Improved network

However, no solution for LC or FCC-ee

"Girder Stability", G. Balik

											· ⁵ 10	6	1	
	Technology								Positioning type		Resolution	Pitch/roll	1977	
	Nano system	Jacks	Cam mover	HLS	HPS	LVDT	WPS	Girder	Magnet					
ESRF		✓		✓				\checkmark		5 mm	5 µm	NC	56 (mm)	
SLS			✓	✓	✓			\checkmark		2,5 mm	2 µm	NC		
ATF2			✓			\checkmark			\checkmark	1,5 mm	2 µm	3-5 µrad		
CLIC	✓		✓				✓		\checkmark	10mm/10 µm *	0,5 μm/0,45 nm*	1,3 µrad		
FCC-ee										???	???	???		
										* Static/dynamic				

"Development of low-cost alignment systems", M. Sosin

"<u>Very thin</u> Non-Evaporable Getter coatings for particle accelerators", P. Costa-Pinto

How thin can it be and still withstand 4 venting / activation cycles?

Photon stimulated desorption yield

PSD decrease with venting/activation/irradiation cycles - PSD increase slightly if no irradiation

PSD without activation

"Development of thin-walled copper electroformed vacuum chambers for undulators", L. Lain Amador

UE38 Undulator^[1]

"Thoughts on Tolerances for the Next Colliders", D. Schulte

