A bottom-up approach within the electroweak effective theory: constraining heavy resonances International Workshop on Future Linear Colliders, LCWS2021 March 17th 2021 – virtual edition

Pich, Rosell, SC, Phys.Rev.D 102 (2020) 3, 035012

A follow up on Pich,Rosell,Santos,SC, PRD93 (2016) no.5, 055041; JHEP 1704 (2017) 012 Krause,Pich,Rosell,Santos,SC, JHEP 1905 (2019) 092

Juan José

Sanz-Cillero

IPARCOS

UNIVERSIDAD COMPLUTENSE

MADRID

Precise EW precision tests & their impact on BSM resonance bounds International Workshop on Future Linear Colliders, LCWS2021 March 17th 2021 – virtual edition

Pich, Rosell, SC, Phys.Rev.D 102 (2020) 3, 035012

A follow up on Pich,Rosell,Santos,SC, PRD93 (2016) no.5, 055041; JHEP 1704 (2017) 012 Krause,Pich,Rosell,Santos,SC, JHEP 1905 (2019) 092

Juan José

Sanz-Cillero

IPARCOS

UNIVERSIDAD COMPLUTENSE

MADRID

<u>Outline</u>

- 1.) Prospects at future Linear Colliders
- 2.) EW effective theory, Resonance extension & UV completion
- 3.) Predictions for HEFT couplings
- 4.) Phenomenology & implications: *M_R bounds*
- 5.) Conclusions

• Significant presition improvement: TGC, oblique parameters, etc

* "The International Linear Collider: A Global Project", Bambade et al., [1903.01629 [hep-ex]]

• Important presicion improvement in κ_Z, κ_W, etc .

• Also improvement wrt LHC in VV \rightarrow VV gauge boson scat.

6/19

2. HEFT, Resonances & UV completion

- EW Effective Theory (EWET = EW χL = HEFT) based on chiral & other SM symmetries:
 - Chiral expansión in powers of p^d:

$$\mathcal{L}_{\mathrm{EWET}} = \sum_{\hat{d} \geq 2} \mathcal{L}_{\mathrm{EWET}}^{(\hat{d})}$$

$$\begin{aligned} \mathbf{O}(\mathbf{p}^{2}), \mathbf{LO} \ (\supset \mathsf{SM}): \quad \mathcal{L}_{\mathrm{EWET}}^{(2)} &= \sum_{\xi} \left[i \, \bar{\xi} \gamma^{\mu} d_{\mu} \xi - v \left(\, \bar{\xi}_{L} \, \mathcal{Y} \, \xi_{R} + \mathrm{h.c.} \right) \right] \\ &- \frac{1}{2g^{2}} \langle \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \rangle_{2} - \frac{1}{2g^{\prime 2}} \langle \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \rangle_{2} - \frac{1}{2g^{2}_{s}} \langle \hat{G}_{\mu\nu} \hat{G}^{\mu\nu} \rangle_{3} \\ &+ \frac{1}{2} \partial_{\mu} h \, \partial^{\mu} h - \frac{1}{2} \, m_{h}^{2} \, h^{2} - V(h/v) + \frac{v^{2}}{4} \, \mathcal{F}_{u}(h/v) \, \langle u_{\mu} u^{\mu} \rangle_{2} \end{aligned}$$

with
$$\mathcal{F}_{u} = 1 + \frac{2\kappa_{W}h}{v} + \frac{c_{2V}h^{2}}{v^{2}} + \mathcal{O}(h^{3})$$
, being $\kappa_{W}^{SM} = c_{2V}^{SM} = 1$

-
$$O(p^4)$$
, NLO (pure BSM):

$$\mathcal{L}_{\text{EWET}}^{(4)} = \sum_{i=1}^{12} \mathcal{F}_i(h/v) \mathcal{O}_i + \sum_{i=1}^{3} \widetilde{\mathcal{F}}_i(h/v) \widetilde{\mathcal{O}}_i + \sum_{i=1}^{8} \mathcal{F}_i^{\psi^2}(h/v) \mathcal{O}_i^{\psi^2} + \sum_{i=1}^{3} \widetilde{\mathcal{F}}_i^{\psi^2}(h/v) \widetilde{\mathcal{O}}_i^{\psi^2} + \sum_{i=1}^{3} \widetilde{\mathcal{F}}_i^{\psi^4}(h/v) \mathcal{O}_i^{\psi^4} + \sum_{i=1}^{2} \widetilde{\mathcal{F}}_i^{\psi^4}(h/v) \widetilde{\mathcal{O}}_i^{\psi^4}.$$

(x) Buchalla, Cata, JHEP 1207 (2012) 101; Buchalla, Catà, Krause, NPB 880 (2014) 552-573

(x) Alonso, Gavela, Merlo, Rigolin, Yepes, PLB 722 (2013) 330-335; Brivio et al, JHEP 1403 (2014) 024

(x) Pich,Rosell,Santos,SC, PRD93 (2016) no.5, 055041; JHEP 1704 (2017) 012; Krause,Pich,Rosell,Santos,SC, JHEP 1905 (2019) 092

(*) Examples of other works on EW_χL: Delgado,Dobado,Llanes-Estrada, PRL114 (2015) 22, 221803; Espriu,Mescia,Yencho, PRD88 (2013) 055002; Delgado,Garcia-Garcia,Herrero, JHEP 11 (2019) 065; Fabbrichesi,Pinamonti(,Tonero,Urbano, PRD93 (2016) 1, 015004; Corbett,Éboli,Gonzalez-Garcia, PRD 93 (2016) 1, 015005; Quezada,Dobado,SC, in preparation.

- Here, study of the SM bosonic sector \rightarrow EFT bosonic operators only
- List of CP even operators:

i	\mathcal{O}_i	$\mathcal{O}_i^{\psi^2}$	$\mathcal{O}_{i}^{p^{4}}$	
1	$\frac{1}{4} \langle f_{+}^{\mu\nu} f_{+\mu\nu} - f_{-}^{\mu\nu} f_{-\mu\nu} \rangle_{2}$	$\langle J_S \rangle_2 \langle u_\mu u^\mu \rangle_2$	$\langle J_S J_S \rangle_2$	
2	$\frac{1}{2} \langle f_{+}^{\mu\nu} f_{+\mu\nu} + f_{-}^{\mu\nu} f_{-\mu\nu} \rangle_{2}$	$i \langle J_T^{\mu\nu} \left[u_\mu, u_\nu \right] \rangle_2$	$\langle J_P J_P \rangle_2$:
3	$\frac{i}{2} \langle f_+^{\mu\nu}[u_\mu, u_\nu] \rangle_2$	$\langle J_T^{\mu u} f_{+\mu u} angle_2$	$\langleJ_S angle_2\langleJ_S angle_2$	
4	$\langle u_{\mu}u_{\nu}\rangle_{2}\langle u^{\mu}u^{\nu}\rangle_{2}$	$\hat{X}_{\mu\nu}\langle J_T^{\mu\nu}\rangle_2$	$\langle J_P \rangle_2 \langle J_P \rangle_2$	
5	$\langle u_{\mu}u^{\mu}\rangle_2 \langle u_{\nu}u^{\nu}\rangle_2$	$\frac{\partial_{\mu}h}{v} \left\langle u^{\mu}J_{P} \right\rangle_{2}$	$\langle J_V^\mu J_{V,\mu} \rangle_2$	
6	$\frac{(\partial_{\mu}h)(\partial^{\mu}h)}{v^2} \langle u_{\nu}u^{\nu} \rangle_2$	$\langle J^{\mu}_{A} angle_{2} \langle u / \mathcal{T} angle_{2}$	$\langle J^{\mu}_{A}J_{A,\mu} angle_{2}$	
7	$\frac{(\partial_{\mu}h)(\partial_{\nu}h)}{v^2} \langle u^{\mu}u^{\nu} \rangle_2$	$\frac{(\partial_{\mu}h)(\partial^{\mu}h)}{v^2}\langle J_S\rangle_2$	$\langle J_V^\mu angle_2 \langle J_{V,\mu} angle_2$	
8	$\frac{(\partial_{\mu}h)(\partial^{\mu}h)(\partial_{\nu}h)(\partial^{\nu}h)}{v^4}$	$\langle \hat{G}_{\mu u} J_T^{8\mu u} \rangle_{2,3}$	$\langleJ_A^\mu\rangle_2\langleJ_{A,\mu}\rangle_2$	
9	$\frac{(\partial_{\mu}h)}{v} \langle f_{-}^{\mu\nu} u_{\nu} \rangle_{2}$		$\langle J_T^{\mu u} J_{T\mu u} angle_2$	
10	$\langle \mathcal{T} u_{\mu} \rangle_2 \langle \mathcal{T} u^{\mu} \rangle_2$		$\langle J_T^{\mu\nu} \rangle_2 \langle J_{T\mu\nu} \rangle_2$	
11	$\hat{X}_{\mu u}\hat{X}^{\mu u}$		\ Feri ope	nion rators
12	$\langle \hat{G}_{\mu\nu} \hat{G}^{\mu\nu} \rangle_3$			

For h = 0, these \mathcal{F}_j are related to the a_i couplings of the Higgsless Longhitano Lagrangian [12, 13] in the form $a_i = \mathcal{F}_i$ for $i = 1, 4, 5, a_2 = (\mathcal{F}_3 - \tilde{\mathcal{F}}_1)/2$ and $a_3 = -(\mathcal{F}_3 + \tilde{\mathcal{F}}_1)/2$.

(x) Pich,Rosell,Santos,SC, PRD93 (2016) no.5, 055041; JHEP 1704 (2017) 012; Krause,Pich,Rosell,Santos,SC, JHEP 1905 (2019) 092

Precise EW precision tests & their impact on BSM resonance bounds

8/19

• Resonance Lagrangian extension: 0⁺⁺ (S), 0⁻⁺ (P), 1⁻⁻ (V) and 1⁺⁺ (A) (*relevant terms*)

$$\begin{split} \Delta \mathcal{L}_{\mathrm{RT}} &= \frac{v^2}{4} \left(1 + \frac{2 \kappa_W}{v} h + c_{2V} h^2 \right) \langle u_{\mu} u^{\mu} \rangle_2 + \frac{c_d}{\sqrt{2}} S_1^1 \langle u_{\mu} u^{\mu} \rangle_2 + d_P \frac{(\partial_{\mu} h)}{v} \langle P_3^1 u^{\mu} \rangle_2 + \tilde{c}_T \hat{V}_{1\mu}^1 \langle u^{\mu} T \rangle_2 + c_T \hat{A}_{1\mu}^1 \langle u^{\mu} T \rangle_2 \\ &+ \langle V_{3\mu\nu}^1 \left(\frac{F_V}{2\sqrt{2}} f_+^{\mu\nu} + \frac{iG_V}{2\sqrt{2}} [u^{\mu}, u^{\nu}] + \frac{\tilde{F}_V}{2\sqrt{2}} f_-^{\mu\nu} + \sqrt{2} \tilde{\lambda}_1^{hV} (\partial^{\mu} h) u^{\nu} \right) \rangle_2 + F_X V_{1\mu\nu}^1 \hat{X}^{\mu\nu} + C_G V_{1\mu\nu}^8 \hat{G}^{\mu\nu} \\ &+ \langle A_{3\mu\nu}^1 \left(\frac{F_A}{2\sqrt{2}} f_-^{\mu\nu} + \sqrt{2} \lambda_1^{hA} (\partial^{\mu} h) u^{\nu} + \frac{\tilde{F}_A}{2\sqrt{2}} f_+^{\mu\nu} + \frac{i\tilde{G}_A}{2\sqrt{2}} [u^{\mu}, u^{\nu}] \right) \rangle_2 + \tilde{F}_X A_{1\mu\nu}^1 \hat{X}^{\mu\nu} + \tilde{C}_G A_{1\mu\nu}^8 \hat{G}^{\mu\nu} \,. \end{split}$$

(we denote couplings of P-odd ops. w/ a tilde: e.g., ${\Tilde F}_V$)

Antisymmetric tensor formalism $R_{\mu\nu}$ for Spin-1 resonance ^(x).

For the description of fermions+bosons a mixed Proca+Antisym. formalism needed ^{(x) (+)}

(x) Pich,Rosell,Santos,SC, PRD93 (2016) no.5, 055041; JHEP 1704 (2017) 012; Krause,Pich,Rosell,Santos,SC, JHEP 1905 (2019) 092 (+) Kampf,Novotny,Trnka, Eur.Phys.J.C 50 (2007) 385-403

J.J. Sanz Cillero

Precise EW precision tests & their impact on BSM resonance bounds 9/19

• R contribution to the O(p⁴) EFT:

i	\mathcal{O}_i	\mathcal{F}_i	i	\mathcal{O}_i	\mathcal{F}_i
1	$\frac{1}{4} \langle f_{+}^{\mu\nu} f_{+\mu\nu} - f_{-}^{\mu\nu} f_{-\mu\nu} \rangle_2$	$-\frac{F_V^2-\widetilde{F}_V^2}{4M_{V_3^1}^2}+\frac{F_A^2-\widetilde{F}_A^2}{4M_{A_3^1}^2}$	7	$rac{(\partial_\mu h)(\partial_ u h)}{v^2}\langle u^\mu u^ u angle_2$	$\frac{d_P^2}{2M_{P_3^1}^2} + \frac{\lambda_1^{hA~2}v^2}{M_{A_3^1}^2} + \frac{\widetilde{\lambda}_1^{hV~2}v^2}{M_{V_3^1}^2}$
2	$\frac{1}{2} \langle f_{+}^{\mu\nu} f_{+\mu\nu} + f_{-}^{\mu\nu} f_{-\mu\nu} \rangle_2$	$-\frac{F_V^2+\widetilde{F}_V^2}{8M_{V_3^1}^2}-\frac{F_A^2+\widetilde{F}_A^2}{8M_{A_3^1}^2}$	8	$\frac{(\partial_{\mu}h)(\partial^{\mu}h)(\partial_{\nu}h)(\partial^{\nu}h)}{v^{4}}$	0
3	$rac{i}{2}\langle f^{\mu u}_+[u_\mu,u_ u] angle_2$	$-\frac{F_V G_V}{2 M_{V_3^1}^2} - \frac{\widetilde{F}_A \widetilde{G}_A}{2 M_{A_3^1}^2}$	9	${(\partial_\mu h)\over v}\langlef^{\mu u}u_ u angle_2$	$-\frac{F_A\lambda_1^{hA}v}{M_{A_3^1}^2}-\frac{\widetilde{F}_V\widetilde{\lambda}_1^{hV}v}{M_{V_3^1}^2}$
4	$\langle u_\mu u_ u angle_2 \langle u^\mu u^ u angle_2$	$\frac{G_V^2}{4M_{V_3^1}^2} + \frac{\tilde{G}_A^2}{4M_{A_3^1}^2}$	10	$\langle {\cal T} u_\mu angle_2 \langle {\cal T} u^\mu angle_2$	$-\frac{\widetilde{c}_{T}^{2}}{2M_{V_{1}^{1}}^{2}}-\frac{c_{T}^{2}}{2M_{A_{1}^{1}}^{2}}$
5	$\langle u_\mu u^\mu angle_2 \langle u_ u u^ u angle_2$	$\frac{c_d^2}{4M_{S_1^1}^2} - \frac{G_V^2}{4M_{V_3^1}^2} - \frac{\widetilde{G}_A^2}{4M_{A_3^1}^2}$	11	$\hat{X}_{\mu u}\hat{X}^{\mu u}$	$-rac{F_X^2}{M_{V_1^1}^2}-rac{\widetilde{F}_X^2}{M_{A_1^1}^2}$
6	$rac{(\partial_\mu h)(\partial^\mu h)}{v^2} \langle u_ u u^ u angle_2$	$-\frac{\widetilde{\lambda}_1^{hV\;2} v^2}{M_{V_3^1}^2} - \frac{\lambda_1^{hA\;2} v^2}{M_{A_3^1}^2}$	12	$\langle \hat{G}_{\mu u}\hat{G}^{\mu u} angle_3$	$-rac{(C_G)^2}{2M_{V_1^8}^2}-rac{(\widetilde{C}_G)^2}{2M_{A_1^8}^2}$

2	$\widetilde{\mathcal{O}}_i$	$\widetilde{\mathcal{F}}_{i}$	i	$\widetilde{\mathcal{O}}_i$	$\widetilde{\mathcal{F}}_{i}$
1	$rac{i}{2}\langle f_{-}^{\mu u}[u_{\mu},u_{ u}] angle_{2}$	$-\frac{\widetilde{F}_V G_V}{2M_{V_3^1}^2}-\frac{F_A \widetilde{G}_A}{2M_{A_3^1}^2}$	3	$rac{(\partial_\mu h)}{v} \langle f^{\mu u}_+ u_ u angle_2$	$-\frac{F_V\widetilde{\lambda}_1^{hV}v}{M_{V_3}^2}-\frac{\widetilde{F}_A\lambda_1^{hA}v}{M_{A_3}^2}$
2	$\{f^{\mu u}_+ f_{-\mu u}\}_2$	$-\frac{F_V \tilde{F}_V}{4 M_{V_3^1}^2} - \frac{F_A \tilde{F}_A}{4 M_{A_3^1}^2}$			

(x) Pich,Rosell,Santos,SC, PRD93 (2016) no.5, 055041; JHEP 1704 (2017) 012; Krause,Pich,Rosell,Santos,SC, JHEP 1905 (2019) 092

10/19

• UV completion assumptions: high energy constraints

VFF to two EW Goldstones
$$(\varphi \varphi)$$
: $v^2 - F_V G_V - \tilde{F}_A \tilde{G}_A = 0$ AFF to Higgs + EW Goldstone $(h\varphi)$: $\tilde{F}_V G_V + F_A \tilde{G}_A = 0$ VFF to Higgs + EW Goldstone $(h\varphi)$: $\kappa_W v - F_A \lambda_1^{hA} - \tilde{F}_V \tilde{\lambda}_1^{hV} = 0$ AFF to two EW Goldstones $(\varphi \varphi)$: $\tilde{F}_A \lambda_1^{hA} + F_V \tilde{\lambda}_1^{hV} = 0$ W_3B correlator 1st & 2nd WSRs: $\tilde{F}_2 = \tilde{F}_2^2 = \frac{v^2 M_A^2}{v^2 M_A^2}$

(a) 1st word (vanishing of the 1/s term):

$$F_{V}^{2} + \tilde{F}_{A}^{2} - F_{A}^{2} - \tilde{F}_{V}^{2} = v^{2}.$$
(b) 2nd WSR (vanishing of the 1/s² term):

$$F_{V}^{2}M_{V}^{2} + \tilde{F}_{A}^{2}M_{A}^{2} - F_{V}^{2}M_{V}^{2} = 0.$$

$$F_{V}^{2} - \tilde{F}_{V}^{2} = \frac{v^{2}M_{A}^{2}}{M_{A}^{2} - M_{V}^{2}}$$

$$F_{V}^{2} - \tilde{F}_{A}^{2} = \frac{v^{2}M_{V}^{2}}{M_{A}^{2} - M_{V}^{2}}$$

$$M_{A} > M_{V}$$

_

_

3. Predictions for HEFT couplings

• O(p⁴) LEC predictions for

only P-even Resonance Theories:

	\mathcal{F}_i				
i	with 2nd WSR	without 2nd WSR			
1	$-\frac{v^2}{4}\left(\frac{1}{M_V^2}\!+\!\frac{1}{M_A^2}\right)$	$-\frac{v^2}{4M_V^2} - \frac{F_A^2}{4} \left(\frac{1}{M_V^2} - \frac{1}{M_A^2} \right) < \frac{-v^2}{4M_V^2}$			
3		$-rac{v^2}{2M_V^2}$			
4	$\frac{v^2}{4}\left(\frac{1}{M_V^2}\!-\!\frac{1}{M_A^2}\right)$				
5		$\frac{c_d^2}{4M_{S_1^1}^2} - \mathcal{F}_4$			
6	$-\kappa_W^2 v^2 \left(\frac{1}{M_V^2} \!-\! \frac{1}{M_A^2}\right)$				
7		$\frac{d_P^2}{2M_P^2} - \mathcal{F}_6$			
9		$-\frac{\kappa_W v^2}{M_A^2}$			

TABLE III. Resonance-exchange contributions to the P-even bosonic $\mathcal{O}(p^4)$ LECs, considering only P-even operators and the short distance constraints. Entries marked with \cdots indicate that the result is the same as in Table I, without further simplification.

* Pich, Rosell,SC, Phys.Rev.D 102 (2020) 3, 035012

• O(p⁴) LEC predictions for P-even & P-odd ops. in the Resonance Theories:

* Pich, Rosell,SC, Phys.Rev.D 102 (2020) 3, 035012

4. Phenomenology & implications: M_R bounds

• <u>INPUTS</u>:

- 1. k_w (h \rightarrow WW): CMS+ATLAS analysis within HEFT [21]
- 2. c_{2V} (hh \rightarrow WW): ATLAS bounds [22]
- **3. F**₁ (**W**₃**B**): LEP S-parameter [24]
- 4. **F**₃ (γ WW): Anomalous TGC $\delta \kappa_{\gamma}$ [26]

5. F₄, F₅ (WW→WW): CMS VBS analysis [27] [<u>Caveats</u>:

- very stringent bounds
- x 100 precision improvement *
- unitarity not incorporated ^(x)
- unitarity would make bound looser ^(x)]

Nevertheless, considered for illustration

- * Aaboud et al., [ATLAS Collaboration], PRD 95, 032001 (2017) 429
- (x) García-García, Herrero, Morales, PRD 100 (2019) no.9, 096003
- (x) Fabbrichesi, Pinamonti, Tonero, Urbano, PRD 93 (2016) no.1, 015004

[95%CL]	LEC		Ref.	Data
0.89 <	κ_W	$<\!1.13$	[21]	LHC
-1.02 <	C ₂ V	< 2.71	[22]	LHC
-0.004 <	\mathcal{F}_1	< 0.004	[24]	LEP via S
-0.06 <	\mathcal{F}_3	< 0.20	[26]	LEP & LHC
-0.0006 <	\mathcal{F}_4	< 0.0006	[27]	LHC
-0.0010 <	$\mathcal{F}_4 + \mathcal{F}_5$	₅ < 0.0010	[27]	LHC

- [21] J. de Blas, O. Eberhardt and C. Krause, "Current and Future Constraints on Higgs Couplings in the Nonlinear Effective Theory," JHEP 1807 (2018) 048 [arXiv:1803.00939 [hep-ph]].
- [22] The ATLAS collaboration [ATLAS Collaboration], "Search for the $HH \rightarrow b\bar{b}b\bar{b}$ process via vector boson fusion production using proton-proton collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector," ATLAS-CONF-2019-030.
- [24] M. Tanabashi et al. [Particle Data Group], "Review of Particle Physics," Phys. Rev. D 98 (2018) no.3, 030001.
- [26] E. da Silva Almeida, A. Alves, N. Rosa Agostinho, O. J. P. boli and M. C. González-García, "Electroweak Sector Under Scrutiny: A Combined Analysis of LHC and Electroweak Precision Data," Phys. Rev. D 99 (2019) no.3, 033001 [arXiv:1812.01009 [hep-ph]].
- [27] A. M. Sirunyan *et al.* [CMS Collaboration], "Search for anomalous electroweak production of vector boson pairs in association with two jets in proton-proton collisions at 13 TeV," Phys. Lett. B **798** (2019) 134985 [arXiv:1905.07445 [hep-ex]].

• <u>1-loop uncertainties</u>:

$$\begin{split} & \mathsf{LEC running}^{(\mathsf{x})} \\ & \frac{\partial \mathcal{F}_i}{\partial \ln \mu} = -\frac{\Gamma_i}{16\pi^2} \\ & & \Gamma_1 = \Gamma_3 = -\frac{1}{6} \left(1 - \kappa_W^2 \right), \qquad \Gamma_2 = -\frac{1}{12} \left(1 + \kappa_W^2 \right), \\ & & \Gamma_4 = \frac{1}{6} \left(1 - \kappa_W^2 \right)^2, \quad \Gamma_5 = \frac{1}{8} \left(\kappa_W^2 - c_{2V} \right)^2 + \frac{1}{12} \left(1 - \kappa_W^2 \right)^2, \\ & & \Gamma_6 = -\frac{1}{6} \left(\kappa_W^2 - c_{2V} \right) \left(7 \kappa_W^2 - c_{2V} - 6 \right), \\ & & \Gamma_7 = \frac{4}{9} \Gamma_8 = \frac{2}{3} \left(\kappa_W^2 - c_{2V} \right)^2, \quad \Gamma_9 = -\frac{1}{3} \kappa_W \left(\kappa_W^2 - c_{2V} \right). \end{split}$$

1-loop estimate from running *

$$\Delta \mathcal{F}_i = |\mathcal{F}_i(\mu = m_h) - \mathcal{F}_i(\mu = 3 \text{ TeV})|$$

 $\Delta \mathcal{F}_{1} = \Delta \mathcal{F}_{3} = 0.9 \cdot 10^{-3}, \qquad \Delta \mathcal{F}_{4} = 3 \cdot 10^{-5}, \\\Delta (\mathcal{F}_{4} + \mathcal{F}_{5}) = 1.7 \cdot 10^{-3}, \qquad \Delta \mathcal{F}_{6} = 3 \cdot 10^{-3}, \\\Delta (\mathcal{F}_{6} + \mathcal{F}_{7}) = 0.6 \cdot 10^{-2}, \qquad \Delta \mathcal{F}_{9} = 1.4 \cdot 10^{-2}.$

(x) Guo,Ruiz-Femenía,SC, PRD92 (2015) 074005 * Pich, Rosell,SC, Phys.Rev.D 102 (2020) 3, 035012

• PREDICTIONS vs DATA:

* $O(10^{-2})$ 1-loop errors [due to ww \rightarrow hh coupling c_{2V}]

* No data currently

Conclusions

✓ LECs with exp. data:

- S-parameter:
- Anomalous TGC:
- VBS:

 $\mathscr{F}_{1} \longrightarrow M_{V,A} \gtrsim 2 \text{ TeV}$ $\mathscr{F}_{3} \longrightarrow M_{V,A} \gtrsim 0.5 \text{ TeV}$ $\mathscr{F}_{4} \longrightarrow M_{V,A} \gtrsim 2 \text{ TeV} \quad \text{for } M_{A}/M_{V} > 1.1$ $\mathscr{F}_{4} + \mathscr{F}_{5} \longrightarrow M_{S_{1}^{1}} \gtrsim 2 \text{ TeV}$

✓ LECs with NO data:

- WW \rightarrow hh: $M_V \sim 2 \text{ TeV} \implies |\mathcal{F}_6| \gtrsim 2 \cdot 10^{-3} \text{ (negative)}$ $M_P \lesssim 2 \text{ TeV} \implies \mathcal{F}_6 + \mathcal{F}_7 \gtrsim 5 \cdot 10^{-3}$ - hZy: $M_{V,A} \sim 2 \text{ TeV} \implies |\mathcal{F}_9| \sim \mathcal{O}(10^{-2}) \text{ (negative)}$

BACKUP

$$\mathcal{G} \equiv SU(2)_L \otimes SU(2)_R \longrightarrow \mathcal{H} \equiv SU(2)_{L+R}$$

 \mathcal{G}/\mathcal{H} coset

 $u(\varphi) = \exp\{i\vec{\sigma}\,\vec{\varphi}/(2v)\}$

$$\begin{split} D_{\mu}U &= \partial_{\mu}U - i\,\hat{W}_{\mu}U + i\,U\hat{B}_{\mu} \rightarrow g_L\left(D_{\mu}U\right)g_R^{\dagger},\\ u_{\mu} &= i\,u\,(D_{\mu}U)^{\dagger}u = -i\,u^{\dagger}D_{\mu}U\,u^{\dagger} = u_{\mu}^{\dagger} \rightarrow g_h\,u_{\mu}\,g_h^{\dagger}, \end{split}$$

$$\mathcal{T}_R \to g_R \mathcal{T}_R g_R^{\dagger}, \qquad \mathcal{T} = u \mathcal{T}_R u^{\dagger} \to g_h \mathcal{T} g_h^{\dagger} \qquad \qquad \mathcal{T}_R = -g' \frac{\sigma_3}{2}$$

The power counting of chiral dimensions adopted to organize the operators of the EWET can be summarized as: $h \sim \mathcal{O}(p^0), u_{\mu}, \partial_{\mu}, \mathcal{T} \sim \mathcal{O}(p^1)$ and $f_{\pm \mu\nu}, \hat{G}_{\mu\nu}, \hat{X}_{\mu\nu} \sim \mathcal{O}(p^2)$ [8, 9].

$$\begin{split} \hat{W}^{\mu} &\rightarrow g_L \, \hat{W}^{\mu} g_L^{\dagger} + i \, g_L \, \partial^{\mu} g_L^{\dagger} \,, \\ \hat{B}^{\mu} &\rightarrow g_R \, \hat{B}^{\mu} g_R^{\dagger} + i \, g_R \, \partial^{\mu} g_R^{\dagger} \,, \\ \hat{W}_{\mu\nu} &= \partial_{\mu} \hat{W}_{\nu} - \partial_{\nu} \hat{W}_{\mu} - i \left[\hat{W}_{\mu} , \hat{W}_{\nu} \right] \rightarrow g_L \, \hat{W}_{\mu\nu} \, g_L^{\dagger} \,, \\ \hat{B}_{\mu\nu} &= \partial_{\mu} \hat{B}_{\nu} - \partial_{\nu} \hat{B}_{\mu} - i \left[\hat{B}_{\mu} , \hat{B}_{\nu} \right] \rightarrow g_R \, \hat{B}_{\mu\nu} \, g_R^{\dagger} \,, \\ f_{\pm}^{\mu\nu} &= u^{\dagger} \hat{W}^{\mu\nu} u \pm u \, \hat{B}^{\mu\nu} u^{\dagger} \rightarrow g_h \, f_{\pm}^{\mu\nu} \, g_h^{\dagger} \,. \end{split}$$
(A3)

$$\hat{W}^{\mu} = -g \frac{\vec{\sigma}}{2} \vec{W}^{\mu}, \qquad \qquad \hat{B}^{\mu} = -g' \frac{\sigma_3}{2} B^{\mu}$$

$$\frac{\partial \mathcal{F}_{i}}{\partial \ln \mu} = -\frac{\Gamma_{i}}{16\pi^{2}}, \qquad \frac{\partial \tilde{\mathcal{F}}_{i}}{\partial \ln \mu} = -\frac{\tilde{\Gamma}_{i}}{16\pi^{2}}$$

$$\Gamma_{1} = \Gamma_{3} = -\frac{1}{6} \left(1 - \kappa_{W}^{2}\right), \qquad \Gamma_{2} = -\frac{1}{12} \left(1 + \kappa_{W}^{2}\right),$$

$$\Gamma_{4} = \frac{1}{6} \left(1 - \kappa_{W}^{2}\right)^{2}, \qquad \Gamma_{5} = \frac{1}{8} \left(\kappa_{W}^{2} - c_{2V}\right)^{2} + \frac{1}{12} \left(1 - \kappa_{W}^{2}\right)^{2},$$

$$\Gamma_{6} = -\frac{1}{6} \left(\kappa_{W}^{2} - c_{2V}\right) \left(7\kappa_{W}^{2} - c_{2V} - 6\right),$$

$$\Gamma_{7} = \frac{4}{9} \Gamma_{8} = \frac{2}{3} \left(\kappa_{W}^{2} - c_{2V}\right)^{2}, \qquad \Gamma_{9} = -\frac{1}{3} \kappa_{W} \left(\kappa_{W}^{2} - c_{2V}\right).$$
(A9)

where only the first term in the expansion of Γ_i in powers of h/v is given, *i.e.*, $\Gamma_i(h = 0)$. Note that $\Gamma_1 = \Gamma_{3-9} = 0$ and $\Gamma_2 \neq 0$ for the SM values, $\kappa_W = c_{2V} = 1$, as it should be.

$$\mathcal{F}_{\mathbf{u}} = \mathbf{1} + \frac{\mathbf{2ah}}{\mathbf{v}} + \frac{\mathbf{bh}^2}{\mathbf{v}^2} + \mathcal{O}(\mathbf{h}^3) \qquad \qquad \mathbf{a_{SM}} = \mathbf{b_{SM}} = \mathbf{1} \qquad \qquad \qquad \mathcal{L}_{\text{EWET}} = \sum_{d \geq 2} \mathcal{L}_{\text{EWET}}^{(d)}$$

$$\Delta \mathcal{L}_{\text{EWET}}^{(2)} = \frac{v^2}{4} \left(1 + \frac{2\kappa_W}{v} h + \frac{c_{2V}}{v^2} h^2 \right) \langle u_{\mu} u^{\mu} \rangle_2$$

$$\Delta \mathcal{L}_{\text{EWET}}^{(4)} = \sum_{i=1}^{12} \mathcal{F}_i(h/v) \ \mathcal{O}_i \ + \ \sum_{i=1}^3 \widetilde{\mathcal{F}}_i(h/v) \ \widetilde{\mathcal{O}}_i$$

$$R_3^n = \frac{1}{\sqrt{2}} \sum_{i=1}^3 \sigma_i R_{3,i}^n, \qquad R_n^8 = \sum_{a=1}^8 T^a R_n^{8,a}$$

with $\langle \sigma_i \sigma_j \rangle_2 = 2\delta_{ij}$ and $\langle T^a T^b \rangle_3 = \delta^{ab}/2$, where $\langle \cdots \rangle_3$ indicates an $SU(3)_C$ trace.

(i) SM content:

- Bosons χ : Higgs h + gauge bosons W^a_µ, B_µ (and QCD)
 - + EW Golsdtones ω^{\pm} , z [non-linearly realized via U(ω^{a}) ^(x)]
- Fermions ψ : (t,b)-type doublets -
- (ii) <u>Symmetries:</u>
 - SM symmetry: Gauge sym. group Spont. Breaking (EWSB)

 $G_{SM} = SU(2)_{I} \times U(1)_{V}$ (and QCD) $G_{SM} \rightarrow H_{SM} = U(1)_{FM}$

Symmetry of the SM scalar sector:

Global CHIRAL sym. Explicit Breaking:

 $G = SU(2)_{I} \times SU(2)_{R} \times U(1)_{R_{-1}} \supset G_{SM}$ Sp.S.Breaking to Cust.sym. $G \rightarrow H = SU(2)_{I+R} \times U(1)_{R_{-1}} \supset H_{SM}$ L⇔R asymmetry of the gauge sector $(g,g' \neq 0)$ t \Leftrightarrow b splitting $(\lambda_t \neq \lambda_b)$

(iii) <u>Chiral power counting:</u>

^{*} See, e.g., rev: HXSWG Yellow Report (non-linear EFT Sec.), arXiv:1610.07922 [hep-ph]

* Pich,Rosell,Santos,SC, PRD93 (2016) no.5, 055041; JHEP 1704 (2017) 012; Krause,Pich,Rosell,Santos,SC, JHEP 1905 (2019) 092