

Timing Detectors: Impact on Physics Reach

Artur Apresyan
International Workshop on Future Linear Colliders, LCWS2021
March 17, 2021

The Challenge of the HL-LHC era

- Imagine separating the 25ns beam crossing into consecutive time slices
 - Each exposure has far fewer vertices than when integrating over an event's complete time profile.
 - Reconstruction and identification of every object is improved

CMS MIP timing detector (MTD)

3/17/21

Barrel Timing Layer (BTL) design

- LYSO crystals as scintillator with an excellent radiation tolerance and fast rise and decay times.
 - Attached to the inner wall of the Tracker Support Tube (TST).
 - 332k channels, organized in 6 Readout Units per tray.
- Time resolution of 35 ps at the beginning of lifetime and 60 ps by the end.

Endcap Timing Layer (ETL) design

- Low Gain Avalanche Diodes (LGADs) with highly doped p+ region just below the n- implants.
 - Radiation tolerance sufficient for endcap fluence (< 2x10¹⁵ n_{eq}/cm²)
 - Very good timing response and resolution (30-45 ps at the beginning-end of lifetime)
- A total of ~14 m² detector with two double-sided layers for each endcap
- Small 1.3x1.3 mm² pixels for low capacitance, ~8.5M channels

b

Timing detector technologies

- Other silicon technologies with precision timing:
 - AC-LGAD: good position and timing resolution for MIPs
 - Deep gain layer, or buried junction LGADs for higher radiation tolerance
 - CMS HGCal: silicon calorimeter with excellent timing resolution
 - Several HV-CMOS MAPS with good time resolution
 - Specially designed sensors provide track position, angle and timing
- Common challenge for many technologies: low-power ASICs

Time-of-flight Particle ID

- Time-of-flight particle identification: 2σ π/K separation up to p~2 GeV and K/p up to p~4 GeV
 - New handle for CMS for heavy flavor physics $\frac{1}{\beta} = \frac{c(t_0^{\rm MTD} t_0^{\rm evt})}{L}$

- Use timing for flavor tagging and providing an additional handle for separation between light quarks at linear colliders
 - Intermediate momentum K[±] ID from fast timing can become a significant contributor for b and c decays identification

Time-of-flight Particle ID

- Competitive momentum coverage comparable to ALICE and STAR
 - Significantly suppressed background candidates
 - Signal significance is drastically improved
 - The region of lηl>1 is uncovered by other experiments

Unique possibility to study charm and bottom hadrons production over a wide range of p_T and rapidity.

Low p_T regions inaccessible without MTD should have the largest effect from QGP.

Physics impact: long-lived particles

- Vertex timing enhances Long-lived particle physics program
- In topologies involving secondary vertices, MTD provides a unique handle to reconstruct the mass of the long-lived neutral particles (e.g. χ_0)

Physics impact: long-lived particles

study by Zhen Liu et al.

https://arxiv.org/abs/1805.05957

$$\Delta t = \frac{\ell_X}{\beta_X} + \frac{\ell_a}{\beta_a} - \frac{\ell_{\rm SM}}{\beta_{\rm SM}}$$

- Timing results in large gains in cτ and mass reach
- L1-trigger to fully exploit LLP potential
 - MTD and ECAL timing trigger for LLP searches can reach 40% signal efficiency

Summary

- Timing is an enabling technology change for future experiments
 - Timing precision of 30-40 ps achieved with several Si-based technologies
 - Precision timing for calorimeters and MIP tracking demonstrated at < 30 ps
- New technologies and applications being actively developed
 - The last dimension to be used in precision experiments!
 - Improvements in event reconstruction, and new handles in searches for deviations from the Standard Model
 - Future tracking detectors will likely be required to have significant timing precision

