

ATLAS Higgs CP analyses

Hongtao Yang (LBNL) on behalf the ATLAS Collaboration

LHC Higgs WG2 Meeting Jan 22, 2021

Introduction

- Known CP violation sources in SM are not enough to explain observed matterantimatter asymmetry
- Higgs boson productions and decays at LHC offer an novel opportunity for probing new CP violation sources in Higgs boson interaction with SM particles

Jan 22, 2021, LHC Higgs WG 2 Meeting

Recent ATLAS results: H→TT and H→WW

- $H \rightarrow \tau \tau$: probe CP of V-H interaction in VBF
 - Use EFT model with only CP odd dim-6 operators considered
 - Build optimal observable as ratio between SM-CP odd interference and SM²
 - CP violation strength constrained $\tilde{d} \in [-0.090, 0.035]$ @68% CL
- H→WW: probe CP mixing in effective g-H interaction using ggF+2-jet events
 - Use Higgs Characterization model
 - Using both shape and rate: $\kappa_{Agg}/\kappa_{Hgg} = 0 \pm 0.5$

Recent ATLAS results: H→ZZ

- Reinterpret simplified template x-section (STXS) measurements in SMEFT framework: fitting CP-odd Wilson coefficients to data
 - Viable in other channels & combination as STXS framework is widely implemented
 - Need to be careful with modification of acceptance

RKELEY

ATLAS

Today's focus: <u>ttH/tH, H→γγ CP analysis</u>

- Only indirect constraints on CP mixing in t-H interaction existed before Run 2 ttH observation
 - Stringent limits from EDMs (e, n, ...): $\kappa_t \sin(\alpha) < 10^{-3}$
 - Also from loop-induced $\mathbf{H} \rightarrow \mathbf{\gamma} \mathbf{\gamma}$ and \mathbf{ggF} rates: $\kappa_t \sin(\alpha) < \sim 0.5$
- The ttH/tH production mode opens a new possibility to probe CP mixing directly in the top Yukawa coupling at tree-level
 - The Lagrangian for t-H interaction including CP mixing is

$$\mathscr{L}_{t} = -\frac{m}{\nu} \kappa_{t}(\cos(\alpha)\bar{t}t + i\sin(\alpha)\bar{t}\gamma_{5}t)H, \ \kappa_{t} > 0, \ \alpha \in [-\pi,\pi]$$

SM corresponds to $\mathbf{a} = \mathbf{0}$, $\mathbf{\kappa}_t = \mathbf{1}$, full CP odd is $\mathbf{a} = \mathbf{90}^\circ$

 The H→yy channel is ideal for this study due to excellent sensitivity and clean signature

What if there is CP mixing?

- The presence of a CP odd component in t-H coupling alters:
 - Cross sections as well as kinematics of ttH & tH processes: can provide direct constraint to top Yukawa coupling (focus of this analysis)
 - H→γγ BR and ggF cross-sections: indirect constraint, can have different interpretation scenarios

Data & signal MC samples

- Data: full Run 2 dataset of 139 fb⁻¹
- ttH/tH signal: NLO MG5_aMC+Pythia8 using Higgs Characterization (HC) model
 - ttH: $\kappa_t = 1$, $\alpha = 0^\circ$, 15° , 30° , ..., 90°
 - tHjb/tWH: sample generated with both κ_t = 1 and ≠ 1 at different mixing angles. κ_W = 1
- **ggF signal**: PowHeg NNLOPS
 - Kinematic dependence on CP mixing checked to be wellcovered by syst. using MG_aMC HC model ggF+2j samples
- Other Higgs production modes: same as typical ATLAS Run 2 Higgs analyses

- Divide diphoton event sample into hadronic (≥3 jets, ≥1 b-jet, 0 lep) and leptonic (≥1 b-jet, ≥1 lep) regions
- In each region, train following two BDTs (using XGBoost)
 - Bkg. rejection BDT: separate ttH-like events from continuum background
 - **CP BDT**: separate CP-even-like ttH/tH events from CP-odd-like
- Divide categories on 2D plane of bkg. rejection vs. CP BDTs
- Fit the $m_{\gamma\gamma}$ spectrum in all categories simultaneously to extract signal

Jan 22, 2021, LHC Higgs WG 2 Meeting

Background rejection BDT

- Use the same BDT discriminant (but not categories!) from <u>Moriond 2019 CONF note</u>
 - Trained on PowHeg ttH sample using 4-vec. of $\gamma,\,j,\,l,\,and\,MET$
- Serves the purpose of CP analysis very well
 - Good rejection of background; good acceptance of ttH/tH signal
 - Weak dependence on CP mixing angle

0.5

CP BDT

 10^{-3}

Hongtao Yang (LBNL)

Categorization

- Scan category boundaries on 2D bkg.
 rejection BDT vs. CP BDT plane to optimize both SM ttH significance and CP separation
- · 20 analysis categories defined in total
 - 12 categories in hadronic region, 8 in leptonic

Hadronic Bkg. Rej. Discriminant

ttH signal yield parameterization

- To fit mixing angle α and top Yukawa coupling strength κ_t as free parameters, need to parameterize ttH and tH signal yields in each category as function of these two parameters
- For ttH process, use

 $A\kappa_t^2\cos^2(\alpha) + B\kappa_t^2\sin^2(\alpha) + E\kappa_t^2\sin(\alpha)\cos(\alpha)$

- Parameterization describe MC predictions well in all categories
- Coefficient E for interference term found to be negligible as expected

tH signal yield parameterization

 For tHW and tHjb processes, need to use more complicated parameterizations considering interference between t-H and W-H

 $A\kappa_t^2 \cos^2(\alpha) + B\kappa_t^2 \sin^2(\alpha) + C\kappa_t \cos(\alpha) + D\kappa_t \sin(\alpha) + E\kappa_t^2 \sin(\alpha)\cos(\alpha) + F$ a² a² 2 Re(a b) 2 Re(a'b) 2Re(a a') b²

Jan 22, 2021, LHC Higgs WG 2 Meeting

ttH and tH cross-section measurements

- Single-channel ttH observation at 5.2σ, assuming SM for other prod. modes
- $\sigma(\text{ttH}, \text{H} \rightarrow \gamma \gamma) = 1.64^{+0.38}_{-0.36}(\text{stat.})^{+0.17}_{-0.16}(\text{syst.}) \text{ fb}$
- tH cross-section < 12×SM @95% CL
- Statistical uncertainty dominates

Hongtao Yang (LBNL)

ERKELEY

CP constraint: not resolve $H \rightarrow \gamma \gamma / ggF$ loops

- Constrain mixing angle a using only info from ttH and tH
 - Use κ_γ vs κ_g results from 80 fb⁻¹ Higgs coupling combination Θ ttH(γγ) to constrain H→γγ and ggF rates
- $|a| > 43^{\circ}$ excluded @95% CL with no prior constraint on κ_t . Pure CP odd excluded at 3.9 σ

Jan 22, 2021, LHC Higgs WG 2 Meeting

CP constraint: resolve $H \rightarrow \gamma \gamma/ggF$ loops

 Assume potential new physics in H→γγ/ggF is only in t-H coupling, and can be parameterized as function of **a** and **κ**t (Ellis et. al. JHEP 04 (2014) 004)

$$\kappa_g^2 = \kappa_t^2 \cos^2(\alpha) + 2.6\kappa_t^2 \sin^2(\alpha) + 0.11\kappa_t \cos(\alpha)(\kappa_t \cos(\alpha) - 1)$$

$$\kappa_\gamma^2 = (1.28 - 0.28\kappa_t \cos(\alpha))^2 + (0.43\kappa_t \sin(\alpha))^2$$

such that $H \rightarrow \gamma \gamma / ggF$ rates could be used to constrain a together with ttH and tH

• Exclude Ial > 43° @95% CL with no prior constraint on $\kappa_{\rm t}$

Hongtao Yang (LBNL)

Conclusions

- Probing CP mixing in Higgs interactions remains interesting for Run 3+
 - CP mixing could be small, and thus would require high precision measurements based on large dataset to expose
 - Measurements limited by stat. uncertainty
- CP analyses still largely in exploratory domain so far, with many interesting ideas tested
 - V-H: harmonize analysis strategies to facilitate combination: STXS bin sensitive to CP mixing; optimal observable
 - t-H: explore multiple decay channels of ttH/tH; interpret ggF and H→γγ rates and ggF event topologies
 - Look into H→ττ

Backup

Jan 22, 2021, LHC Higgs WG 2 Meeting

- From Eq. 2.4 of <u>JHEP 1311, 180</u> (2013), $d_e/e = 9.0 \times 10^{-27} \text{cm } \kappa_e \tilde{\kappa}_t$
- From <u>ACME experiment</u> $d_e/e = 1.1 \times 10^{-29} \text{cm} \rightarrow \tilde{\kappa}_t < 10^{-3}$
- Also could to constrain CP odd $\tilde{\kappa}_t$ using neutron and mercury EDMs with no assumption on coupling to 1st generation fermions

