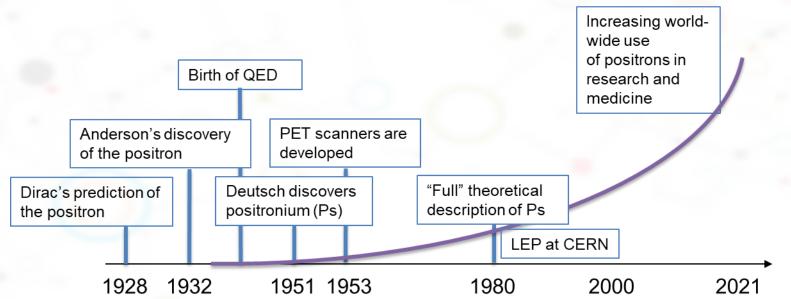


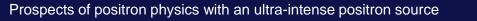
Prospects of positron physics with an ultra-intense positron source


Ruggero Caravita¹, Benjamin Rienäcker²

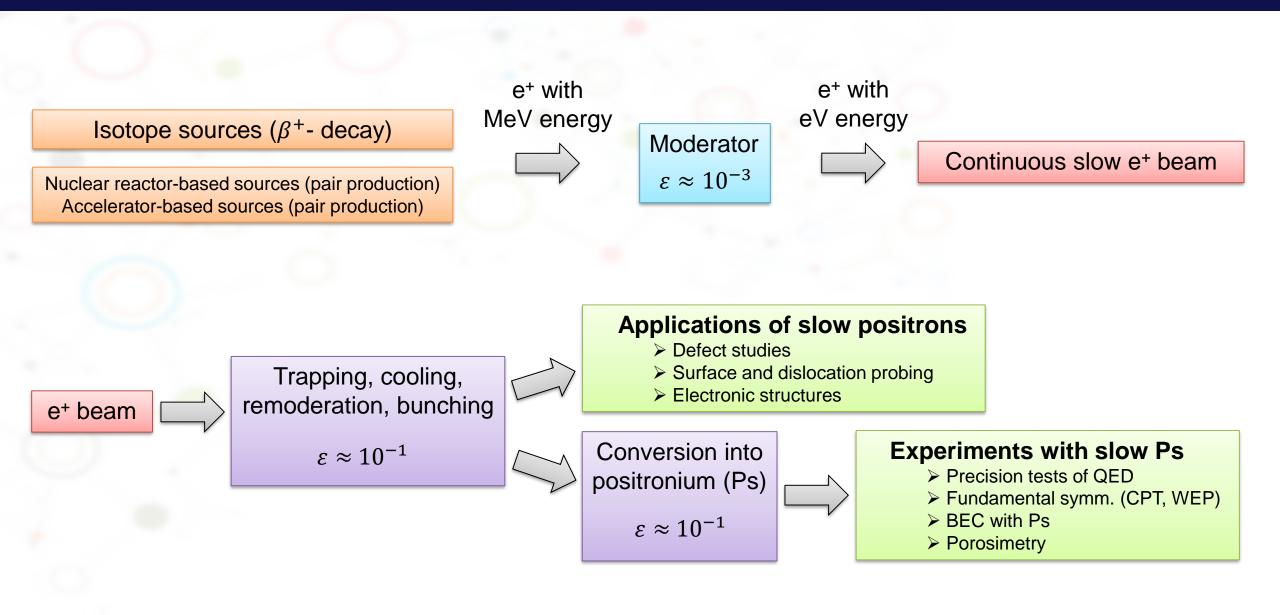
¹ INFN – TIFPA, Trento (IT) ² EP Department, CERN, Geneva (CH)

> ruggero.caravita@cern.ch b.rienacker@cern.ch

A century worth of positrons (almost)

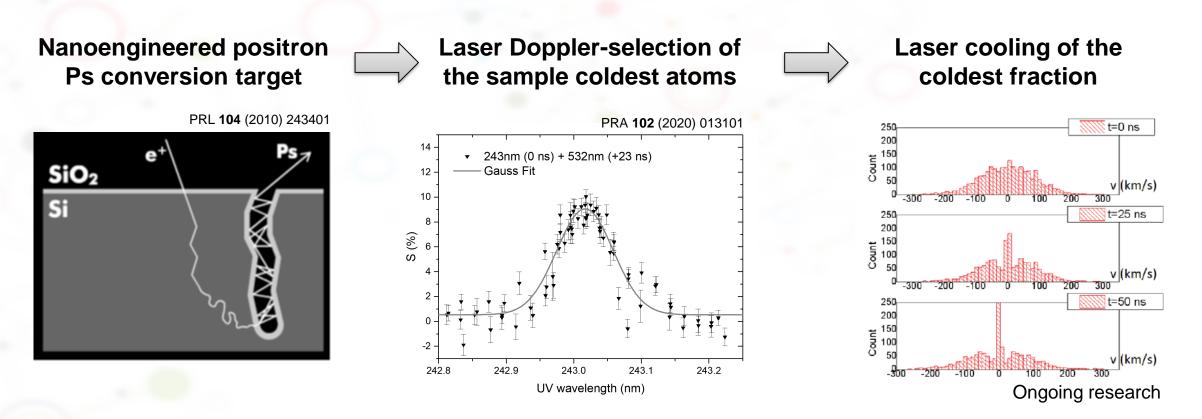

Few examples for institutions using positrons for research with low energy antiparticles:

- CERN (Antimatter Factory)
- Many universities
 (UCL, TU Delft, UTokyo, UC Riverside & San Diego, Grenoble ...)
- ➢ FRM II (NEPOMUC)


➢ KEK (IMSS)

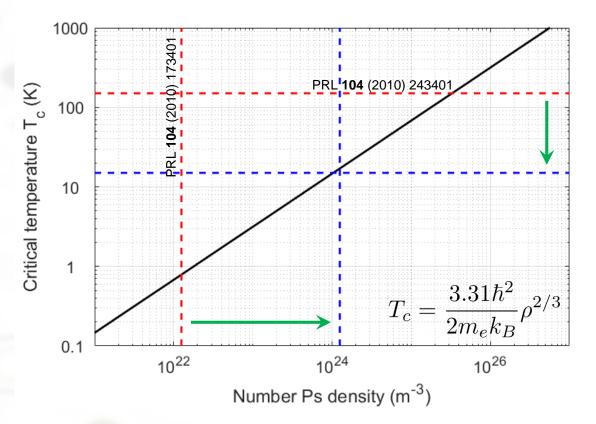
Low energy positron/positronium physics at one glance

Precision QED studies (annihilation lifetime, Ps spectroscopy) Fundamental symmetry tests (CPT, WEP, invisible decays) Material studies (defect studies)



lini

llini



Gained a lot of experience recently within the AEgIS collaboration on these three pillars

- Limited availability of positrons currently only one experimental trial every few minutes.
- Experiments would greatly benefit from a reliable LINAC providing e⁺ in high amounts.
- Usually, small collaborations do not have the resources to operate a LINAC source.

lini

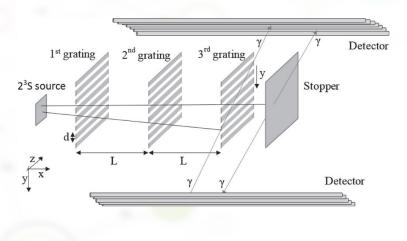
Area of impact #1 – Efforts towards the first Bose-Einstein condensation of Ps

Nanochanneled silicon converters are able to produce Ps at temperatures of 150 K and below in a cryogenic enviroment.

Laser cooling 100 K Ps atoms for 150 ns (50 cooling cycles) would reduce the temperature by ≈100 K, currently being investigated by AEgIS (ATTRACT)

An increase of at least two orders of magnitude in Ps density is necessary. The current limit is the rate of accumulation of e^+ as a cold, dense plasma in a 4.5T magnetic field ($10^8 e^+$ in 15 minutes).

When a Ps-BEC annihilates, a coherent burst of gamma rays is emitted. A proposed way to build a 511 keV gamma ray laser.

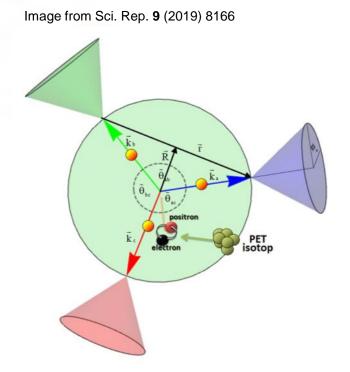

lini

5

Area of impact #2 – Tests of fundamental symmetries and beyond the SM searches

Tests of the Weak Equivalence Principle with leptonic systems

Image from EPJ D 74 (2020) 79


Requires cold long-lived Ps sources in very high amounts

Searches for rare Ps annihilation channels

Table from Phys. Part. Nucl. 37 (2006) 321-346

Decay mode	90% upper limit, ppm
$\gamma + X$	5-1
	1.1
	340
$\gamma + X \longrightarrow \gamma + 2\gamma$	28
	300
γγ	233
	350
YYYY	2.6
	3.7
$\gamma + X_1 + X_2$	44
Invisible	2.8
	540

Detection of multipartite entanglement in Ps annihilation γ rays

Requires simultaneous detection of three Compton scattering events

Prospects of positron physics with an ultra-intense positron source

Rare-event searches

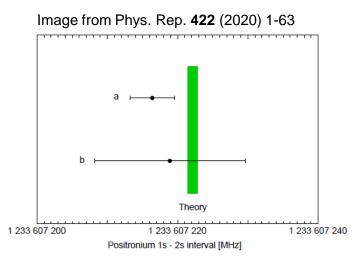
limited by statistics

Area of impact #3 – Next generation of precision QED measurements employing colder Ps sources

NT 1	1	CC /
Nuc	ear	effects

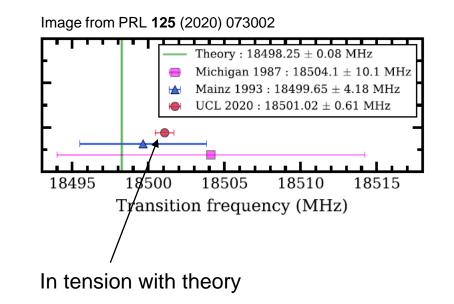
- Magnetic moment (HFS)
- Charge distribution
- Hydrogen-like electronic atom $(Z\alpha)^2 m/M$ or $\alpha(Z\alpha)m/m_p$ $(Z\alpha mcR_N/\hbar)^2$

Positronium α^2


Ps is an ideal system to test bound state QED as of the absence of nuclear effects

Status of QED tests with Ps: theoretical calculations are orders of magnitude more accurate than experiments!

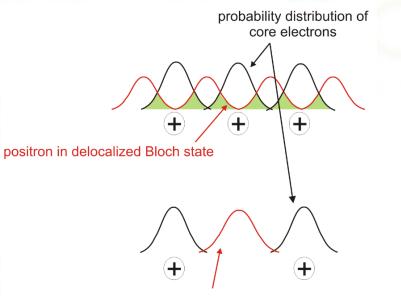
Decay times


From Phys. Part. Nucl. **37** (2006) 321-346 $\Gamma_o^{\text{th}} = 7.039979(11) \ \mu \text{s}^{-1},$ $\Gamma_p^{\text{th}} = 7989.6178(2) \ \mu \text{s}^{-1},$ $\Gamma_o^{\text{exp}} = 7.0404(10)^{\text{stat.}}(8)^{\text{syst.}} \ \mu \text{s}^{-1}$ $\Gamma_p^{\text{exp}} = 7990.9(1.7) \ \mu \text{s}^{-1}$

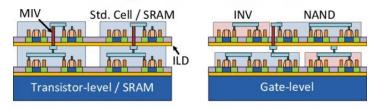
1³S-2³S transition frequency

Limited by second order Doppler effect, requires colder Ps sources

2³S-2³P transition frequency



Prospects of positron physics with an ultra-intense positron source


Area of impact #4 – Positrons as non-destructive nanoprobes

Possible use case: Ultra-high density monolithic 3D ICs

positron localized in defect

 \rightarrow Depth-resolved defect analysis with positrons



Image from Panth S. et al. (2014), DOI: 10.1109/S3S.2014.7028195

8

Ultra-intense positron source

Better statistical sensitivity (results/time) Higher freedom of selecting cold samples (less systematics) Unlocking exciting new possibilities (e.g. Ps-BEC)

Thank you