

FUTURE CIRCULAR COLLIDER

A ROBOTIC SYSTEM FOR REMOTE INTERVENTIONS IN THE FCC COMPLEX

H. Gamper, A. Mueller, H. Gattringer, M. Di Castro

3

Content

FCC

1. Robotics in Big Science Facilities

- State of the Art
- Robotics at CERN

2. The Vision

- Requirements & Restrictions for a Robotic System
- Integration and Logistics
- Current Research
- 4. Remote Maintenance Code of Practice
- 5. Collaborations

Content

FCC

1. Robotics in Big Science Facilities

- State of the Art
- Robotics at CERN

2. The Vision

- Requirements & Restrictions for a Robotic System
- Integration and Logistics
- Current Research
- 4. Remote Maintenance Code of Practice
- 5. Collaborations

Robotics in Big Science Facilities - State of the Art

Universal Systems

Figure 4 RESQ-C

Figure 24 Warrior ©TEPCO

Figure 2 RESQ-A

○ FCC

Figure 19 TALON equipped with rad-mapping system ©TEPCO

Figure 22 BROKK 90 ©TEPCO

Task Specific Systems

JET - Primary (RACE)

JET - Secondary (RACE)

Spallation Neutron Source Target – Oakland National Laboratory

Robotics in Big Science Facilities – Robotics at CERN

○ FCC

Telemax robot

EXTRM robot with single arm (CERN made)

The TIM (CERN made)

EXTRM robot (CERN made)

CERNbot (CERN made)

BE-CEM-MRO

CRANEbot (CERN made)

6

Content

FCC

1. Robotics in Big Science Facilities

- State of the Art
- Robotics at CERN
- 2. The Vision

- Requirements & Restrictions for a Robotic System
- Integration and Logistics
- Current Research
- 4. Remote Maintenance Code of Practice
- 5. Collaborations

8

The Vision

- Conduct all planned repetitive interventions fully autonomous
- · Move fully autonomous to a Point of Interest
- Operator can take over to inspect/repair at any time
- Carry Different Tools

• ...

- In every point of the tunnel within 10min (1 Robot ~300km/h or 15 Robots ~20km/h)
- Emergency System to Guide/Rescue People
- Detect Hazards like Fire, Fluid Leaks, etc.

- \Rightarrow Decrease maintenance costs
- \Rightarrow Decrease downtime of the FCC
- \Rightarrow Protect workers from dangerous interventions

9

Content

FCC

1. Robotics in Big Science Facilities

- State of the Art
- Robotics at CERN

2. The Vision

- Requirements & Restrictions for a Robotic System
- Integration and Logistics
- Current Research
- 4. Remote Maintenance Code of Practice
- 5. Collaborations

Development Process

FCO

∩ FCC

Hannes Gamper

Development Process

○ FCC

FCC

Hannes Gamper

Κ

Service Caverns

Development Process

Initial Study Requirements Restrictions Integration & Logistics **Design Optimization Control Concepts** Prototype PoC

○ FCC

Parking in Service Caverns:

- Radiation Safe
- Accessible for Maintenance work
- Multiple Points Distributed along the ring

Survey Gallery

Fani Valchkova-Georgieva

н

С

D

Development Process

○ FCC

Figure 11: Optimization results FCC-hh (collision objects)

Gamper, H.; Gattringer, H.; Müller, A. and Di Castro, M. (2021). Design Optimization of a Manipulator for CERN's Future Circular Collider (FCC). In Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics, ISBN 978-989-758-522-7

Figure 13: Prototype in FCC-ee - folded configuration

Figure 14: Prototype in FCC-ee cross-section

Figure 15: Prototype in FCC-hh cross-section

Development Process

○ FCC

Development Process

FCC

past and ongoing interventions

Content

FCC

1. Robotics in Big Science Facilities

- State of the Art
- Robotics at CERN

2. The Vision

- Requirements & Restrictions for a Robotic System
- Integration and Logistics
- Current Research
- 4. Remote Maintenance Code of Practice
- 5. Collaborations

FCC

Remote Maintenance – Code of Practice

- Experience from over 200 interventions and over 1000 tasks
- Following the Code of Practice increases efficiency of remote maintenance and dismantling tasks
- The Code of Practice includes mainly:
 - 1. Guidelines for the Design Process of...
 - Equipment
 - Remote intervention procedures
 - Tool definitions
 - 1. Proposal for common...
 - Interfaces
 - Connectors
 - Placement

=> Decrease downtime of FCC machine and maintenance costs

	EDMS Nr. 2263542]		
S Engineering Department	REFERENCE XXXXXXX	EDMS NO. 2263542	веу. 1.0 Ра	RELEASED
Code of practice for e	quipment design to b mote maintenance	e compa	atible	e with
Remote main	tenance code	of pra	acti	ce
For inspect	tion and <u>Telemanip</u>	ulation	l	

DOCUMENT PREPARED BY:	DOCUMENT CHECKED BY:	DOCUMENT APPROVED BY:
EN-SMM-MRO	Mario Di Castro [EN-SMM]	Alessandro Masi [EN-SMM]

Mario Di Castro, Luca Rosario Buonocore, Sergio Di Giovannantonio,

Content

FCC

1. Robotics in Big Science Facilities

- State of the Art
- Robotics at CERN

2. The Vision

3. Development Process

- Requirements & Restrictions for a Robotic System
- Integration and Logistics
- Current Research

4. Remote Maintenance - Code of Practice

5. Collaborations

Collaborations

FCC

- Many Collaborations with Universities
 and external Companies
- Well defined interfaces in CRF for seamless integration
- Aim to be at top of technological standards by continuous exchange with partners all over the world

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II (Pfl **ETH**zürich ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE reate IIIT ISTITUTO ITALIANO DI TECNOLOGIA UNIVERSITÀ DEGLI STUDI DI GENOVA University of Zurich^{UZH} The second SDU 🎸 Loughborough JCBN UNIVERSITÄT HEIDELBERG Institut für ZUKUNFT SEIT 1386 L-Università πп UT Universidad de Oviedo ta' Malta MONTPELLIER - SETE Universidá d'Uviéu University of Oviedo ÷ TAMPERE UNIVERSITY OF TECHNOLOGY UNIVERSIDAD POLITÉCNICA DE MADRID (UNIVERSITÀ DI SIENA 1240 DUTÉCNICA UNIVERSITY OF THE AEGEAN

Contact: hannes.gamper@cern.ch

Mario Di Castro, Giacomo Lunghi

Thank you for your attention!