STATUS AND PLANS FOR FCC-HH COLLIMATION

R. Bruce, A. Abramov, I. Besana, F. Carra, F. Cerutti, G. Gobbi, J. Hunt, R. Martin, J. Molson, M. Pasquali, S. Redaelli, M. Varasteh

Acknowledgements: Y. Alexahin, W. Bartmann, A. Bertarelli, S. Arsenyev, A. Chance, B. Dalena, A. Faus-Golfe, M. Fiascaris, S. Gilardoni, E. Gianfelice-Wendt, J. Jowett, A. Krainer, G. Lamanna, A. Langner, A. Lechner, A. Mereghetti, D. Mirarchi, N. Mokhov, A. Narayanan, L. Nevay, E. Renner, M. Schaumann, D. Schulte, M. Serluca, E. Skordis, M.J. Syphers, I. Tropin, Y. Zou

Challenges with beam losses in the FCC-hh

- Foreseen to have unprecedented 50 TeV beam energy in the FCC-hh, and much higher intensity than the LHC
- The loss of even a tiny fraction of the beam could cause a magnet quench or even damage
- Total stored energy beam
 - LHC design: 362 MJ
 - HL-LHC: 678 MJ
 - FCC: 8.3 GJ → more than factor 20 higher than LHC design!

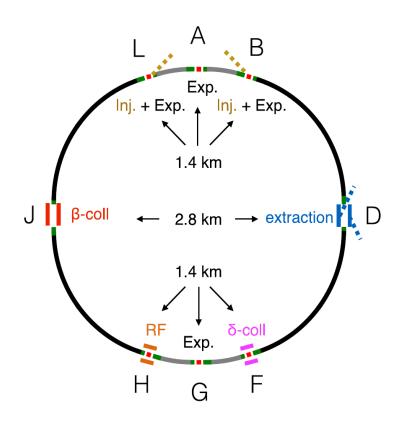
How much is 8.3 GJ?

LHC: 362 MJ - kinetic energy of

TGV train cruising at 155 km/h

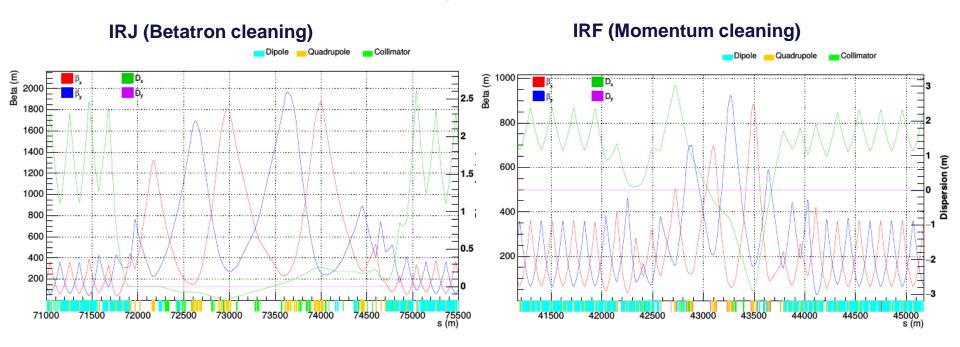
FCC-hh: 8.3 GJ - kinetic energy of

Airbus A380 (empty) cruising at 880 km/h

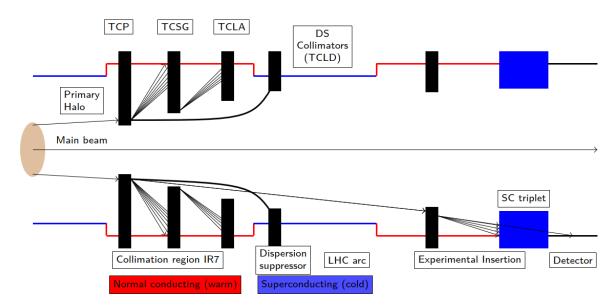

Collimation in FCC-hh

- Crucial to safely handle beam losses in the FCC-hh
- Roles of collimation system: clean unavoidable regular losses, passive machine protection, optimize background and radiation dose
 - At the same time, keep the impedance within limits
- Main design loss scenarios
 - Betatron cleaning 0.2 h beam lifetime during 10 s or "steady-state" 1 h beam lifetime
 - 0.2 h lifetime and 8.3 GJ stored energy => 11.6 MW beam loss power
 - Unavoidable off-momentum losses of unbunched beam at start of ramp:
 1% loss over 10 s
 - Extraction and injection kicker pre-fire, other possible failures
- In addition: Special loss scenarios, e.g. collisional losses in heavy-ion operation

FCC-hh collimation layout

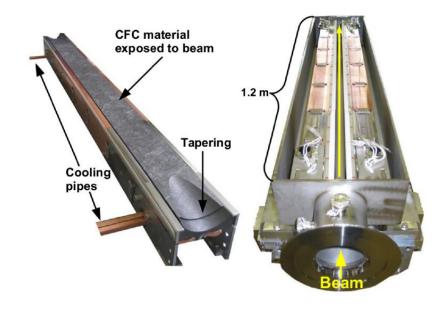

- The FCC-hh collimation system is a scaled up version of the HL-LHC/LHC system (NIM, A 894 (2018) 96-106)
 - Betatron collimation in IPJ
 - Momentum collimation in IPF
- Need much higher β-functions in FCC-hh than LHC to keep impedance under control and use mm gaps similar to the LHC

Optics of collimation insertions


- Scaled β-functions and insertion length by factor 5 from the LHC → 2.8 km insertion length
- Increased dispersion in momentum cleaning insertion

FCC-hh collimation hierarchy

- As in the LHC, using a multi-stage system with primary and secondary collimators, shower absorbers, dispersion suppressor (DS) collimators
- Similar layout as the LHC, but some modifications: DS collimators in many insertions, extra shower absorbers in extraction insertion, removal of skew primary



FCC collimator hardware

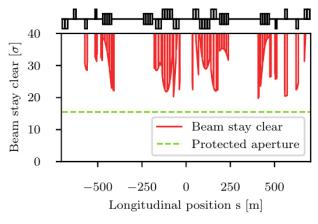
- Assuming LHC-type collimators, with some modifications, following iterative simulations of tracking, energy deposition and thermo-mechanical response
 - Shorter and thicker primary collimators (30 cm vs 60 cm length, 3.5 cm vs 2.5 cm thickness)
 - Thicker jaws of first secondary collimator (4.5 cm vs 2.5 cm)

Materials

- Primary collimators, and most loaded secondary collimator made of carbon-fiber-composite (CFC) for maximum robustness
- Remaining secondary collimators in MoGr with 5 µm Mo coating for a good compromise between impedance and robustness
- High-density material Inermet180 in shower absorbers and tertiary collimators

All collimators – materials, settings, orientation

Table 9.6: The full list of FCC-hh movable collimators, including their materials, angles, active jaw lengths, and settings throughout the cycle. The settings are given for the reference value of the normalised emittance of $2.2 \, \mu m$.

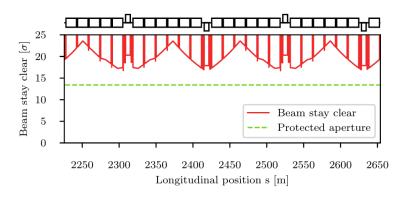
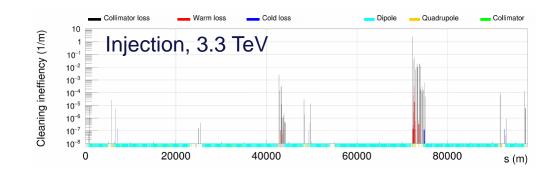

Collimator	Material	Angle (rad)	Length (m)	Injection $(n\sigma)$	Collision $(n\sigma)$
TCP.D4LJ.H1	С	1.57	0.3	7.6	7.6
TCP.C4LJ.H1	C	0	0.3	7.6	7.6
TCSG.A4LJ.H1	C	2.46	1	8.8	8.8
TCSG.B3LJ.H1	MoGR	2.5	1	8.8	8.8
TCSG.A3LJ.H1	MoGR	0.71	1	8.8	8.8
TCSG.D2LJ.H1	MoGR	1.57	1	8.8	8.8
TCSG.B2LJ.H1	MoGR	0	1	8.8	8.8
TCSG.A2LJ.H1	MoGR	2.35	1	8.8	8.8
TCSG.A2RJ.H1	MoGR	0.808	1	8.8	8.8
TCSG.B3RJ.H1	MoGR	2.47	1	8.8	8.8
TCSG.D3RJ.H1	MoGR	0.897	1	8.8	8.8
TCSG.E3RJ.H1	MoGR	2.28	1	8.8	8.8
TCSG.4RJ.H1	MoGR	0.00873	1	8.8	8.8
TCLA.A4RJ.H1	Iner	1.57	1	12.6	12.6
TCLA.B4RJ.H1	Iner	0	1	12.6	12.6
TCLA.C4RJ.H1	Iner	1.57	1	12.6	12.6
TCLA.D4RJ.H1	Iner	0	1	12.6	12.6
TCLA.A5RJ.H1	Iner	0	1	12.6	12.6
TCLD.8RJ.H1	Iner	0	1	21.0	35.1
TCLD.10RJ.H1	Iner	0	1	21.0	35.1
TCLD.11RJ.H1	Iner	0	1	21.0	35.1
TCP.5LF.H1	C	0	0.3	10.8	18.1
TCSG.4LF.H1	MoGR	0	1	13.0	21.7
TCSG.3RF.H1	MoGR	0	1	13.0	21.7
TCSG.A4RF.H1	MoGR	2.98	1	13.0	21.7
TCSG.B4RF.H1	MoGR	0.189	1	13.0	21.7
TCLA.A4RF.H1	Iner	1.57	1	14.4	24.1
TCLA.B4RF.H1	Iner	0	1	14.4	24.1
TCLA.5RF.H1	Iner	0	1	14.4	24.1
TCLA.6RF.H1	Iner	0	1	14.4	24.1
TCLD.8RF.H1	Iner	0	1	21.0	35.1
TCLD.10RF.H1	Iner	0	1	21.0	35.1

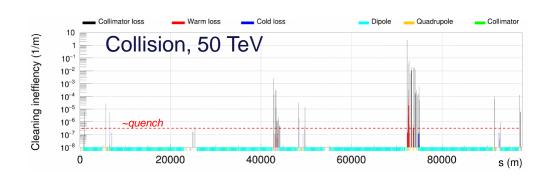
Collimator	Material	Angle (rad)	Length (m)	Injection $(\mathbf{n}\sigma)$	Collision $(\mathbf{n}\sigma)$
TCLD.8RA.H1	Iner	0	1	21.0	35.1
TCLD.10RA.H1	Iner	0	1	21.0	35.1
TCLD.8RG.H1	Iner	0	1	21.0	35.1
TCLD.10RG.H1	Iner	0	1	21.0	35.1
TCLD.8RB.H1	Iner	0	1	21.0	35.1
TCLD.10RB.H1	Iner	0	1	21.0	35.1
TCLD.8RL.H1	Iner	0	1	21.0	35.1
TCLD.10RL.H1	Iner	0	1	21.0	35.1
TCLD.7RF.H1	Iner	0	1	21.0	35.1
TCLD.11RF.H1	Iner	0	1	21.0	35.1
TCLAV.6RF.H1	Iner	1.57	1	14.4	24.1
TCLD.8RD.H1	Iner	0	1	21.0	35.1
TCLA.3RD.H1	Iner	1.57	1	11.8	11.8
TCLA.4RD.H1	Iner	0	1	11.8	11.8
TCTH.5LA.H1	Iner	0	1	14.0	10.5
TCTVA.5LA.H1	Iner	1.57	1	14.0	10.5
TCTH.5LG.H1	Iner	0	1	14.0	10.5
TCTVA.5LG.H1	Iner	1.57	1	14.0	10.5
TCTH.4LB.H1	Iner	0	1	14.0	10.5
TCTV.4LB.H1	Iner	1.57	1	14.0	10.5
TCTH.4LL.H1	Iner	0	1	14.0	10.5
TCTV.4LL.H1	Iner	1.57	1	14.0	10.5
TCTH.4LA.H1	Iner	0	1	14.0	10.5
TCTVA.4LA.H1	Iner	1.57	1	14.0	10.5
TCTH.4LG.H1	Iner	0	1	14.0	10.5
TCTVA.4LG.H1	Iner	1.57	1	14.0	10.5
TCDQA.A3RD.H1	C	1.57	10	9.8	9.8

Machine aperture

- Available normalized aperture, to be protected by collimators, studied with MAD-X, using HL-LHC-like tolerances
 - Future work: study correction of optics, orbit, alignment, etc, and possibly come up with a dedicated set of tolerances for the FCC-hh, as well as detailed studies of allowed aperture based on realistic beam losses
- At top energy and $\beta^*=30$ cm : still some margin left potential to squeeze to smaller β^*
- At injection: most of the ring including arcs within tolerances. A few local DS bottlenecks slightly below allowed aperture

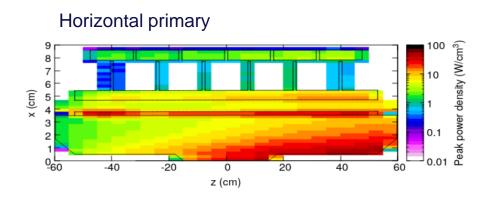
(a) IRA at collision energy

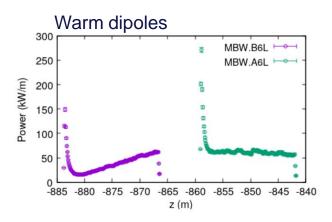




Figure 7: The calculated aperture at injection energy, as a function of distance s over two arc cells, shown together with the criterion for the minimum aperture.

Collimation performance – FCC-hh protons

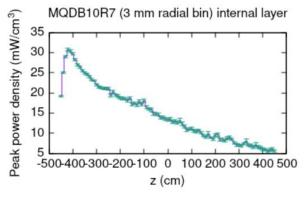
- Collimation performance checked with tracking studies using the SixTrack-FLUKA coupling – see talk J. Molson
- Collimation system is extremely efficient at absorbing horizontal and vertical losses – almost no losses on cold machine aperture
- Rough quench limit at 50 TeV from energy deposition studies: 3E-7 /m for 12 minute lifetime
 - No simulated cold losses above quench limit for ideal machine
 - Imperfections may bring them close to the quench limit
 - Skew halo might need different lifetime limit. No large skew losses seen at LHC

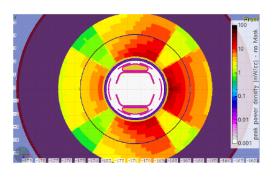




Energy deposition studies: warm section

- Simulated power load in IRJ with FLUKA, for 12 minute beam lifetime at 50 TeV, with inputs from the SixTrack tracking studies
- Conclusions for warm section (see <u>talk</u> M. Varasteh):
 - Initially very worrying losses, triggered iterations
 - With modified collimator designs, all CFC/MoGr collimators below 100 kW deemed acceptable
 - Passive absorbers and warm magnets receive impressive power loads (hundreds of kW) need special attention to the design of the cooling system, but probably not a showstopper

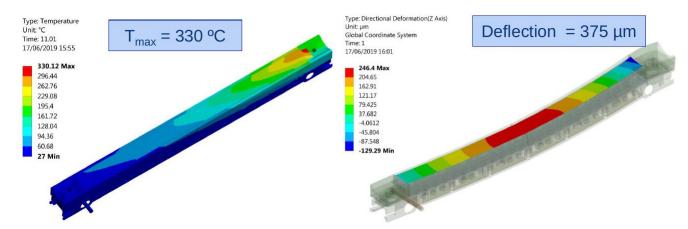




Energy deposition studies: cold section

- Simulated power load in IRJ for 12 minute beam lifetime at 50 TeV using FLUKA
- Conclusions for cold section (see <u>talk</u> M. Varasteh):
 - DS collimators are strictly needed reduce power load by an order of magnitude
 - All magnets below estimated quench limit of 70 mW/cm3, but need additional mask on most exposed quadrupole
 - Most loaded DS collimator intercepts around 4 kW

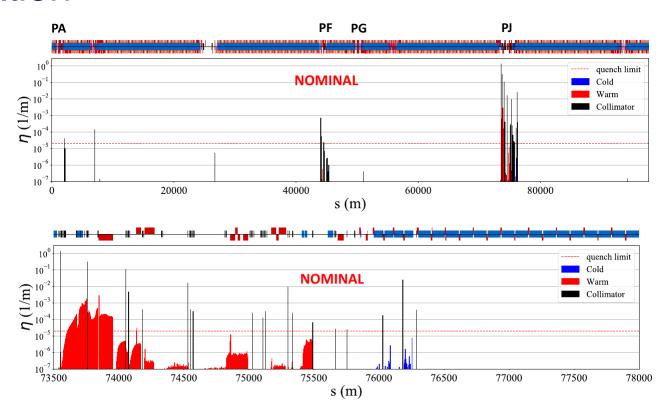
Most loaded cold magnet



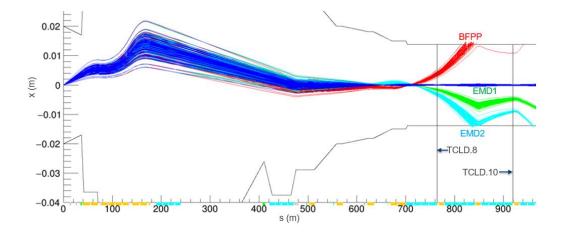
Thermo-mechanical studies

 Based on FLUKA inputs, studied thermo-mechanical response of the most loaded collimators (vertical primary with highest peak power density 50kW/cm³, first secondary with highest total power load 92 kW) using Ansys (see <u>talk</u> G. Gobbi, M. Pasquali)

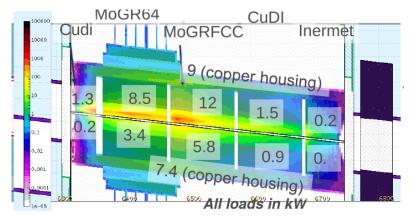
Conclusions:

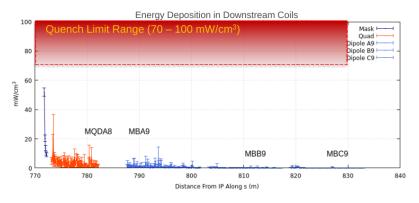

- Collimators survive mainly without permanent damage in spite of extreme loss conditions, but significant deflection and temperature increase
 - Only exception: damage on cooling pipes could probably be solved by material change
 - Outgassing could become an issue to be investigated. Add local pumping?

Pb ion collimation


- FCC-hh also foreseen to operate with heavy ions, tentatively assuming Pb
- Studied collimation efficiency using the SixTrack FLUKA coupling (see PhD thesis)
- With DS collimators (essential!) cold losses are kept below the assumed quench limit
- Energy deposition studies needed for full assessment

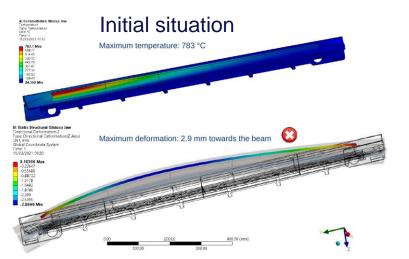
Pb ion secondary beams (1)


- In Pb ion operation, secondary beams from the collisions at the IPs may quench magnets
 - Ions with changed rigidity (acquiring electrons BFPP loss of one or several nucleons) wrongly bent by magnetic fields
 - HL-LHC: power load of up to ~170 W for BFPP
 - FCC-hh: power load of up to ~56 kW for BFPP (more than 100 kW for the most common beams)
- Losses tracked in SixTrack (see <u>talk</u> J. Molson) can be intercepted by DS collimators



Pb ion secondary beams (2)

- Energy deposition studies carried out to quantify impact of showers from DS collimators (see <u>talk</u> and IPAC21 paper by J. Hunt)
 - Safely disposing of >100 kW localized losses in steady state operation poses a great challenge!
- Initial studies showed very high loads on collimator, and power loads far above the quench limit on downstream magnets
- Iterating on various, designs, greatly improved solution found: intercept all secondary beams with one large absorber in cell 8, composed of blocks of different materials



Pb ion secondary beams (3)

- Thermo-mechanical analysis using Ansys of the DS impacted collimator (see <u>talk</u> J. Guardia Valenzuela)
- Initially found unsustainable deformations and temperature increase
- Mitigations:
 - Changing orientation of the MoGr part of the absorber (denser MoGr than for secondary collimators)
 - Changing the housing material from Glidcop to Molybdenum
 - "Segmenting" the collimator in several shorter modules : ½ or ¼ of full length
- => Greatly improved situation, but more work needed to quantify acceptable deformation and the mechanical collimator design. Modify optics to increase β-functions? Outgassing?

Final situation, after mitigations

Table 2: Simulation results with different jaw designs.

Jaw	L	R	L	R	L	R
Housing	Cu	Cu	Mo	Mo	Mo	Mo
Sections	1	1	1	1	4	4
T_{max} (°C)	204	136	291	181	296	188
$\delta_{max} (\mu m)$	1060	800	530	380	150	90

Summary (1)

- An excellent collimation performance is crucial to keep the FCC-hh safe, and to operate smoothly without quenches
 - 8.3 GJ stored beam energy, 11.6 MW beam loss power
- A collimation system has been designed, scaled up from the LHC system
- Performance has been studied through a simulation chain of tracking, energy deposition, thermomechanical analysis
 - During lifetime drops to 12 minutes, the present design can protect the machine from quenches without being damaged, for both protons and Pb ions
 - A few minor open points see next slide

Summary (2): future work and open points

Future work on present system design:

- Refine tolerances for aperture calculations
- Study outgassing and cooling of the most impacted elements in collimation insertion.
- Study different materials in cooling pipes to avoid damage
- Some studies of failure scenarios done (not shown here) some more might be needed
- Impedance is on the limit we might want to improve it
- Further error studies, including also alignment and magnetic field errors
- Any tests for HiRadMat?
- Pb ion operation
 - Energy deposition studies of collimation insertion and dispersion suppressor, possibly including imperfections
 - Further studies of secondary beams from collision points

Alternative system designs

- Present FCC-hh IRJ has a 2.8km length requests to shorten insertion to 2.1 km or less
 - Need to re-think the layout could possibly re-use work for the LHC on a new betatron cleaning optics with higher β-functions, which would require a lower scaling factor of the insertion length
 - Would require redoing most of the studies presented today

Thank you for your attention.