

FCC WEEK 2021 28TH JUNE – 2ND JULY

From vertex to wrapper: the IDEA tracking system for FCC-ee Online event, 1st July 2021

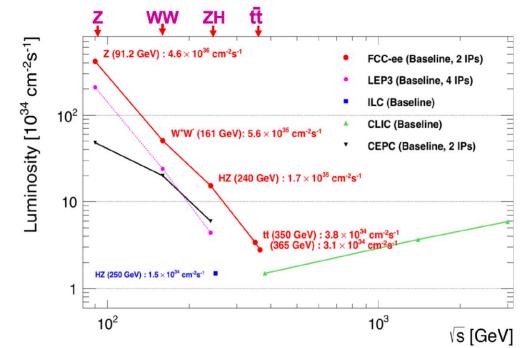
Attilio Andreazza Università di Milano and INFN For the IDEA community

(plus some stolen slides from other presentations...)

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Introduction

International Detector for Electronpositron Accelerators


- Detector concept for e⁺e⁻ circular machine
- Documented in the FCCee CDR

UNIVERSITÀ

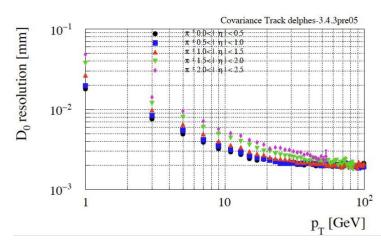
DI MILANO

- Focus of today presentations:
 - some considerations for the most challenging environment:
 Z pole running
 - updates on the R&D for the tracker

See P. Giacomelli's talk on Monday

FCC-ee parameters		Z	W⁺W⁻	ZH	ttbar
√s	GeV	91.2	160	240	350-365
Luminosity / IP	10 ³⁴ cm ⁻² s ⁻¹	230	28	8.5	1.7
Bunch spacing	ns	19.6	163	994	3000
"Physics" cross section	pb	35,000	10	0.2	0.5
Total cross section (Z)	pb	40,000	30	10	8
Event rate	Hz	92,000	8.4	1	0.1
"Pile up" parameter [µ]	10 ⁻⁶	1,800	1	1	1

Physics requirements

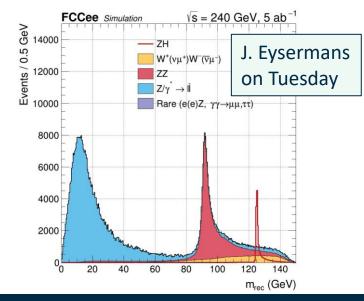

• Impact parameter resolution

$$\sigma_d = a \oplus \frac{b}{p \sin^{\frac{3}{2}} \theta}$$
$$a \sim 5 \,\mu\text{m}, \qquad b \sim 15 \,\mu\text{m} \cdot \text{GeV}$$

- Particle identification capability (p/K/π)
- Momentum resolution

$$\frac{\sigma_p}{p} = p \cdot a + \frac{b}{\sin \theta}$$
$$a < 2 \cdot 10^{-5} \text{GeV}^{-1}$$

- $b/c/g/\tau$ tagging
- Flavour physics



• Recoil mass determination

 $b\overline{b}$

gg

Example: $H \rightarrow c\bar{c}$

ε(BKG)

 10^{-1}

 10^{-2}

 10^{-3}

10

0

-bvsg

-bvsc

b vs ud

better

0.2

0.4

0.6

FCC week, 1 July 2021

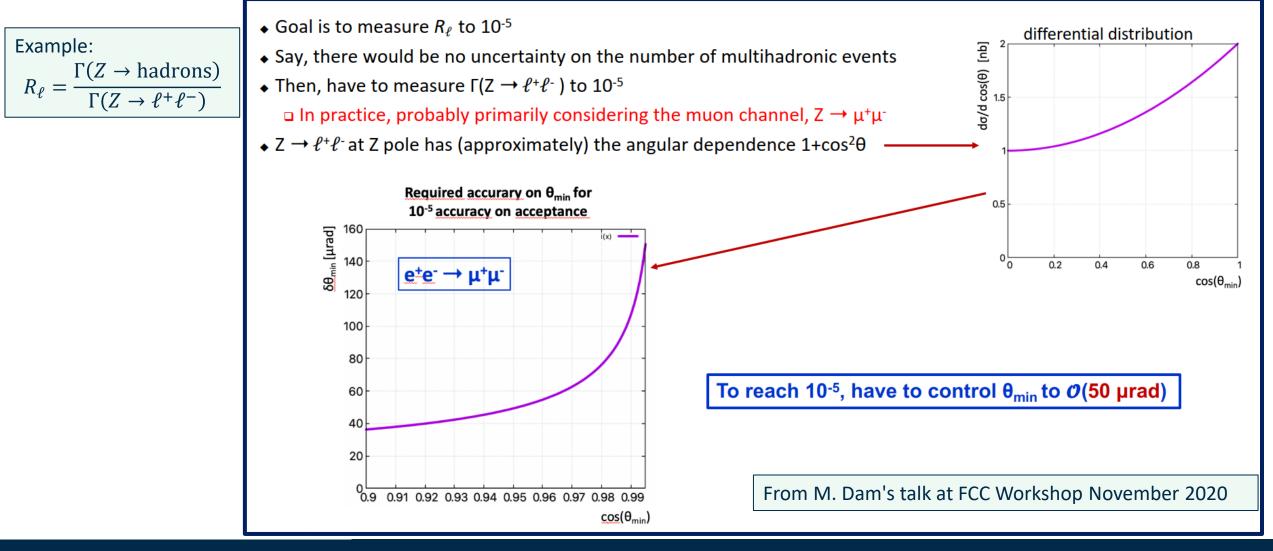
A. Andreazza - The IDEA tracking system

M. Selvaggi

on Tuesday

0.8

ε(SIG)


LHC

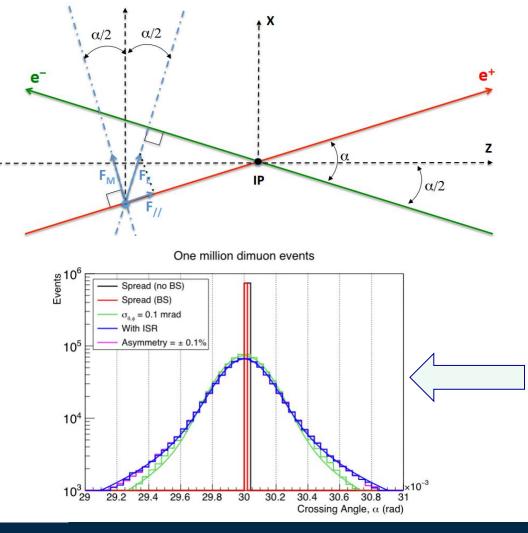
High precision measurements (1)

Strong requirements on detector design come from the systematics

in high precision measurements

UNIVERSITÀ DEGLI STUD DI MILANO

FCC week, 1 July 2021


High precision measurements (2)

Strong requirements on detector design come from the systematics in high precision measurements

Example: center of mass energy correction from beambeam interactions

UNIVERSITÀ

DI MILANO

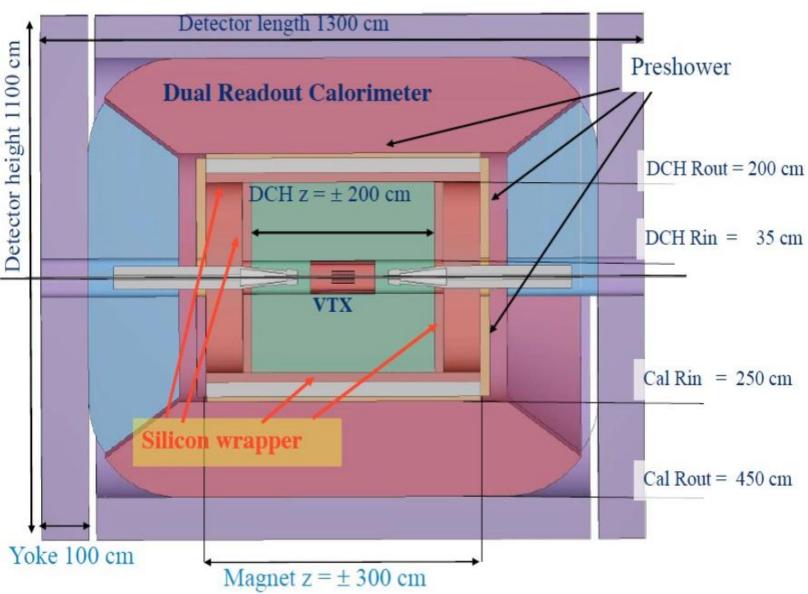
Beam-beam interactions change the energy and direction of the beams:

 changes are correlated such that center of mass energy is constant:

$$\sqrt{s} = \sqrt{E_0^+ E_0^-} \cos \frac{\alpha_0}{2} = \sqrt{E^+ E^-} \cos \frac{\alpha}{2}$$

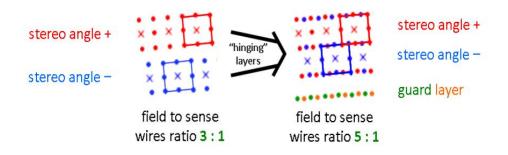
- but α_0 is only measured with 0.1 mrad accuracy by the BPM
- It can be derived by monitoring the measured value of α as a function of the beam intensity
- With statistical uncertainties $\sigma_{\theta,\varphi}$ of 0.1 mrad, can get a 0.3 µrad uncertainty on α in ~5 minutes

See P. Janot's talk at FCC Week 2019


But what about systematics?

FCC week, 1 July 2021

The IDEA concept

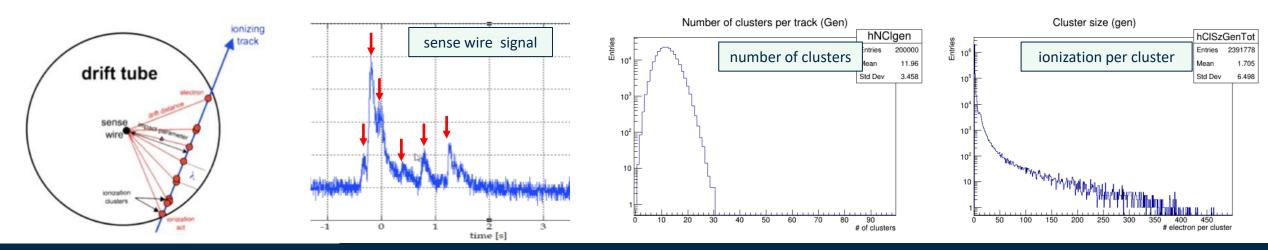

- Central tracking device:
 - light Drift CHamber
- Silicon detectors for precision measurements
 - vertex region
 - silicon wrapper
- Thin solenoid with 2T field (according to MDI limits)
- Dual readout calorimeter
 - supplemented by a pre-shower detector
- Muon chambers in the solenoid return yoke

FCC week, 1 July 2021

The IDEA Drift CHamber

- Extremely light and fast drift chamber
- Gas mixture: 90% He + 10% iC4H10
- 12-15 mm wide wire cells

- The wire net created by the combination of + and orientation generates a more uniform equipotent surface
- 400 ns max drift time
- 14 co-axial super-layers, 8 layers each (112 layers in total) with alternating sign stereo angles ranging from 50 to 250 mrad.



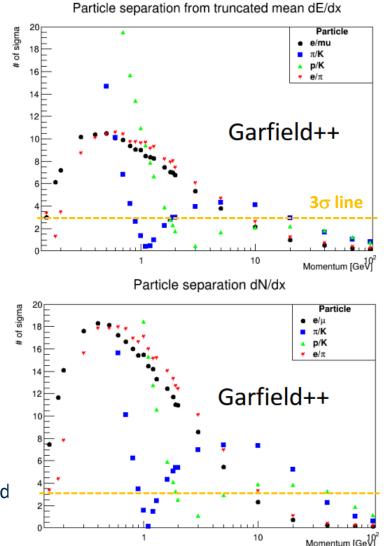
IDEA DCh: Cluster counting method

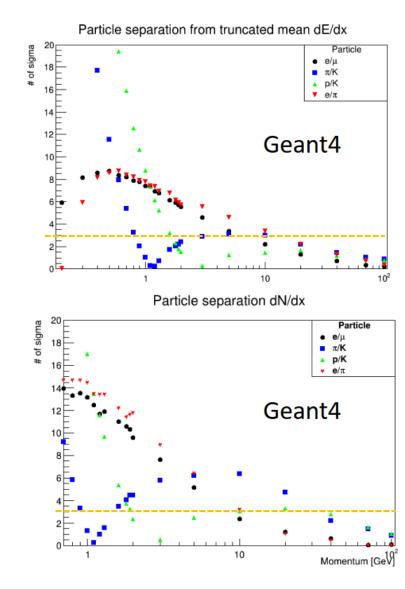
- In He based gas mixtures the signals from each ionization act can be spread in time to few ns.
- A fast read-out electronics could identify them efficiently.
- By counting the number of ionization acts per unit length (dN/dx), it is possible to identify the particles (PID) with a better resolution w.r.t the dE/dx method:
 - dE/dx: analog information, affected by Landau fluctuation; truncated mean suppresses part od the information (112 samples ~4.3% resolution)
 - dN/dx: digital information, affected by only by Poisson fluctuation (~2% on a 2 m tracks)
 - Individual timing of ionization acts could also improve the position resolution (~20%)

FCC week, 1 July 2021

Particle identification performance

Garfield++


• Simulation of ionization process in gases


UNIVERSITÀ DEGLI STUDI DI MILANO

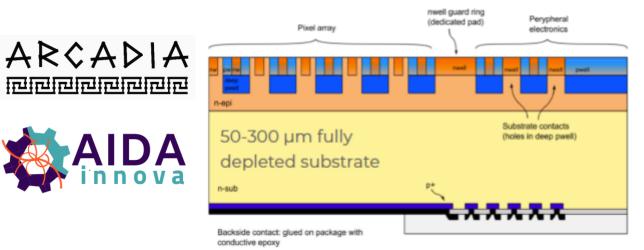
- Detailed gas properties
- Solves the single cell electrostatic planar configuration and simulates the free charges movements and collections on the electrodes

Ported to detector simulation software:

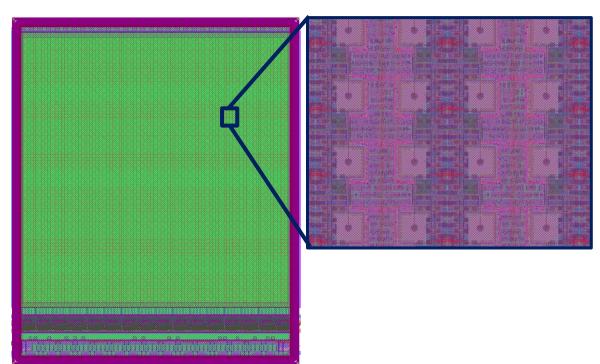
- Geant4
 - Implemented cell properties in the Geant4 IDEA simulation.
 - Clearly improved particle separation with cluster counting
- DELPHES
 - Fast simulation of cluster counting and also timing layer is available
 - Results shown in Selvaggi's talk on Tuesday

FCC week, 1 July 2021

IDEA: the vertex region

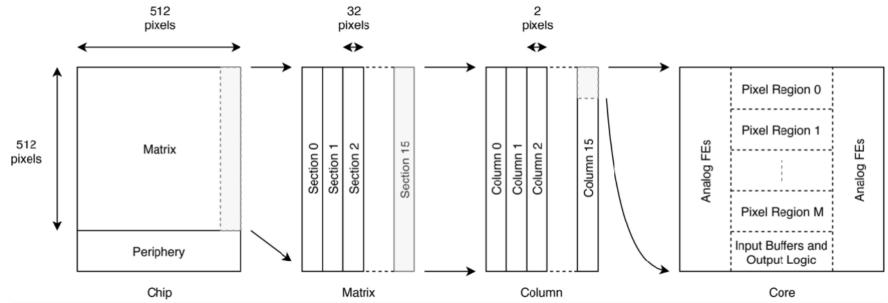

- High precision impact parameter reconstruction with low mass vertex detector
 - at least 20 μm granularity
 - thickness < 0.3% of radiation length
 - low power <20 mW/cm² to minimize services
- Supplemented by coarser/faster silicon detectors in front of the drift chamber
- Depleted Monolithic Active Pixels sensors
 - not necessarily the same technologies for both: different requirements
 - present technologies are very promising
 - R&D on different approaches (ARCADIA, ATLASPIX3)

0.5-	vertex region zoom									
o 💻		1		_	_		-			1.
		0.5		1.0		1	.5	-	2.0	2.5
Layer	R [mm]	L [mm]		eq. thick. [µm]	X ₀ [%]		pixel size [mm²]	-	area cm²]	# of channels
1	17	±110		300	0.3).02×0.02		235	60M
2	23	±150		300	0.3		0.02×0.02		434	110M
3	31	±200		300	0.3		0.02×0.02		780	200M
4	200	±2040		450	0.5		0.05×1.0		52K	105M
5	220	±2240		450	0.5		0.05×1.0	(62K	124M
Disks	R _{in} [mm]	R _{out} [mm]	z mm]	Si eq. th [µm]		X ₀ [%]	pixel siz [mm²]		area [cm²]	# of channels
1	42	190	±400	300		0.3	0.05×0.	05	2.2K	87M
2	44	190	±420	300		0.3	0.05×0.	05	2.2K	86M
3	78	190	±760	300		0.3	0.05×0.	05	1.9K	76M
4	80	190	±780	300		0.3	0.05×0.	05	1.9K	75M



ARCADIA Project

- CMOS DMAPs Platform
 - Started as INFN project, collaborations with Switzerland and China
 - Project within AIDAInnova WP5
- Fully depleted monolithic sensor
- LFoundry 110 nm CMOS process



- Pixels:
 - sensor and back-side processing already tested on silicon
 - 25 × 25 μ m² size
 - Area 50% analog 50% digital
 - small collection electrode (20% of pixel area)
 - versions with ALPIDE and BULKDRIVEN front-ends

FCC week, 1 July 2021

ARCADIA Main Demonstrator

- Matrix core 512 x 512, "side-abuttable" to accomodate a 1024 x 512 silicon active area (2.56 x 1.28 cm²)
- Each 2x512 Column is composed of 2x32-pixel Cores

UNIVERSITÀ

DI MILANO

- Matrix and EoC architecture, data links and payload ID: scalable to 2048 x 2048
- Clock-less matrix integrated on a power-oriented flow
- Triggerless binary data readout, event rate up to 100 MHz/cm²
- Submitted 11/2020, back from foundry on 04/2021, now under characterization. 2nd and 3rd run expected in 2021 and 2022.

UNIVERSITÀ DEGLI STUD DI MILANO

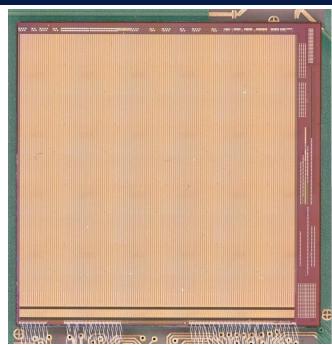
ARCADIA Engineering Run

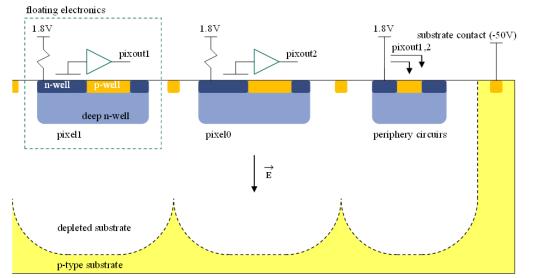
	3753 L	3752 F			
31.2 mm	3742 L field_maximum	3744 L	3751 3751		
	3741 L	3743 L	3747 3748 F 3746 F		
8	25.5 mm		3745 F		

- BN3741/2: ARCADIA-MD1a/b
- ▶ BN3743: ARCADIA-miniD (debug)
- BN3744: TC_PMGMT (on-chip LDOs for large-scale yield management)
- BN3745/6: MAPS and test structures for PSI
- BN3747/8: MATISSE2020 and MATISSE Low Power (front-end for space instruments)
- BN3749/50/51: pixel and strip test structures
 BN3752: 64-channel mixed signal ASIC for Si-Strip readout
- BN3753: 32-channel monolithic strip and embedded readout electronics

Other structures of interest for FCCee detectors

FCC week, 1 July 2021

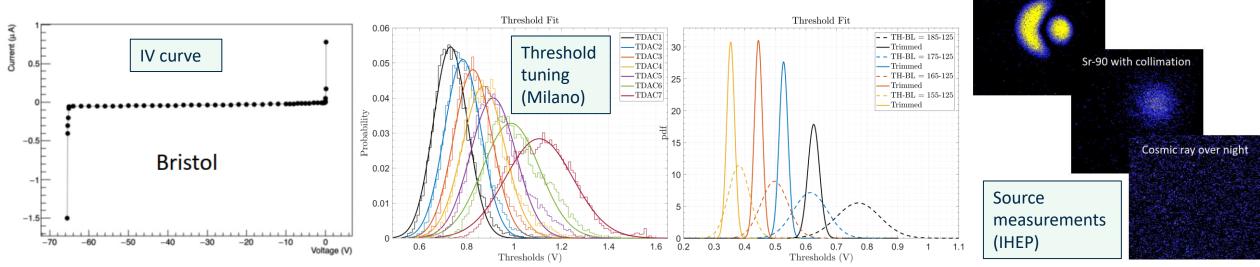


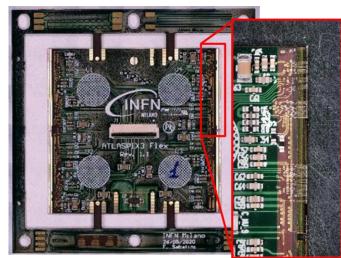

ATLASPIX3

- Monolithic CMOS
 - widespread process allows to produce large areas, fast and cheap
 - no hybridization (bump-bonding) needed
 - single detection layer, can be thinned keeping high signal efficiency and low noise rate

• ATLASPIX3 features

- pixel size $50 \times 150 \,\mu\text{m}^2$ ($25 \times 165 \,\mu\text{m}^2$ feasible)
- up to 1.28 Gbps downlink
- reticle size $20 \times 21 \text{ mm}^2$
- TSI 180 nm process on 200 Ωcm substrate
- 132 columns of 372 pixels
- digital part of the matrix located on periphery
- both triggerless and triggered readout possible:
 - two End of Column buffers
 - 372 hit buffers for triggerless readout
 - 80 trigger buffers for triggered readout



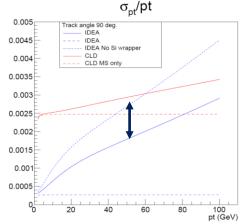

ATLASPIX3

• ATLASPIX3 performance tested in participating laboratories

- Multi-chip module assembly
 - quad module, inspired by ATLAS hybrid pixels
 - implemented interface to laboratory readout system
 - future version with ATLASPIX3.1:
 - full usage of on-chip internal regulators
 - compatible with serial powering

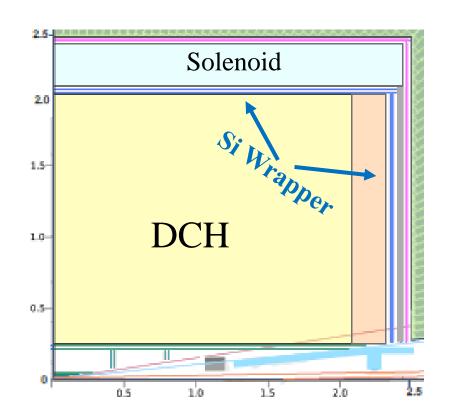
Fe-55 with collimation

FCC week, 1 July 2021


Si Wrapper

Precision silicon layer around the central tracker

- Functionalities:
 - momentum resolution


INIVERSITÀ

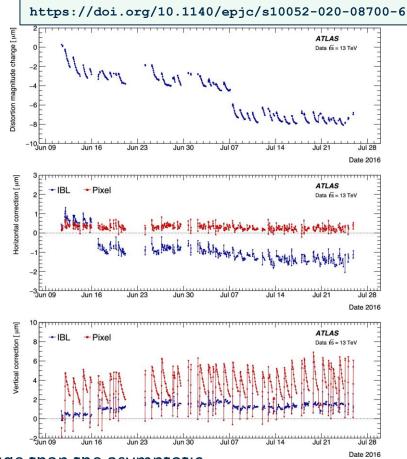
DI MILANO

- extend tracking coverage in the forward/backward region by providing an additional point to particle with few measurements in the drift chamber
- precise and stable ruler for acceptance definition
- Covered area ~90 m²
- Suitable technologies:
 - microstrips (2 layers)
 - double sided microstrip

Layer	R [m m]	L [mm]	Si eq. thick. [µm]	X ₀ [%]	pixel size [mm²]	area [cm²]	# of channels
1	2100	±2400	450	0.5	0.05×100	634K	12.7M
2	2120	±2400	450	0.5	0.05×100	640K	12.8M

- **DMAPS** \rightarrow single layer, high resolution on both coordinates, maybe simpler integration

FCC week, 1 July 2021

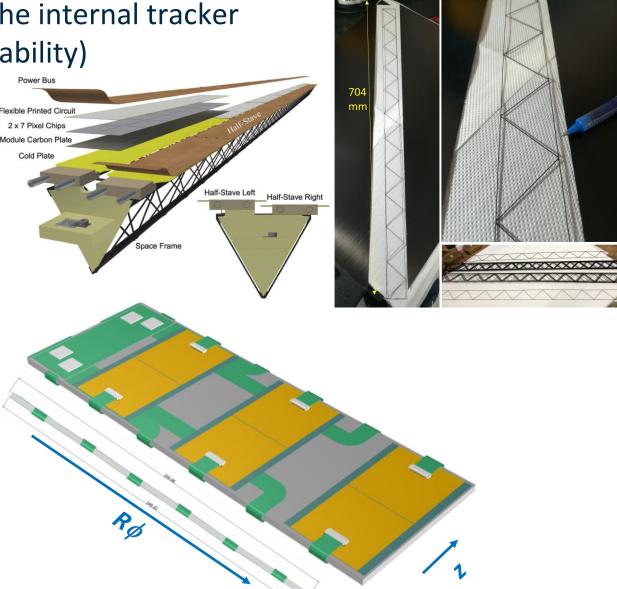

Si Wrapper: why pixels?

- For cross section measurements need to keep systematics on the angular acceptance at the level of 50 µrad at $\theta = 10^{\circ}$.
- in principle, silicon is a very good ruler:

JNIVERSITÀ

DI MILANO

- Inner Silicon Tracker disks: at 40 cm, δR_{sys} <20 μm
 - alignment in principle is better than that, but stability need to be followed accordingly
 - for example: in ATLAS seen few μm systematics movements, but the tracker support will be much lighter in IDEA
- SiWrapper: at 2 m, δR_{sys} <100 μm
 - benefits from pixel structure (order of pixel size)
 - if anchored to the calorimeter provides an independent frame, giving some redundancy
- With 50 μ m pitch pixels and digital readout, $\sigma_z = 14 \mu$ m, expect a θ resolution below 10 μ rad
 - with the caveat that multiple scattering effects can be of a similar order of magnitude than the asymptotic resolution even for $Z \rightarrow \mu\mu$ events: 1% X₀ is 30 µrad for p=45 GeV at 90°
 - instabilities at the µm level may have an impact in the accuracy of the acollinearity measurement for beam angle crossing determination
 - having an independent detector with 2 m lever arm and same resolution as the inner tracker will allow the monitoring and correction of instabilities in both coordinates



FCC week, 1 July 2021

Si tracker - Mechanics

- Local supports needs original solutions for the internal tracker (lightweight) and the wrapper (long-term stability)
- Just a couple of examples:
 - ALICE like staves, but built with subtractive technology
 - Stavelets with ATLASPIX3 modules as option for the Si Wrapper
- Different cooling options available
 - pipes materiale:
 Titanium, steel, carbon, microchannel
 - CO₂ or water cooling
 - alternative cooling of edge supports for the vertex (à la Belle II)

FCC week, 1 July 2021

Si tracker: system considerations

- Complete system consists of 900'000 cm² area / 4 cm² chip = 225k chips (56k quad-modules)
 - aggregation of several modules for data and services distribution is essential
 - inner tracker will be 5--10% of this
- Data rate constrained by the inner tracker
 - average rate 10⁻⁴ 10⁻³ particles cm⁻² event⁻¹ at Z peak
 - assuming 2 hits/particle, 96 bits/hit for ATLASPIX3
 - 640 Mbps link/module (assuming local module aggregation) provides ample operational margin
 - 16 modules can be arranged into **10 Gbps fast links**: **3.5k links**
 - can also assume 100 Gbps links will be available: 350 links
- DAQ architecture
 - triggerless readout will fit the data transmission budget but requires off-chip re-ordering of data
 - triggered readout will be simpler and would also reduce the bandwidth occupancy
- Power consumption
 - ATLASPIX3 power consumption 150 mW/cm²
 - 600 mW/chip \rightarrow 2.4 W/module \rightarrow total FE power 130 kW
 - additional power for on detector aggregation and de-randomizations ~2W/link

Conclusions

- The IDEA detector concept is evolving since the FCCee FDR
- Besides pure detector resolution, it is important to consider the handle on systematics uncertainties
- The tracking system implements
 - Drift Chamber for tracking and particle identification
 - high precision vertex detector
 - Si-wrapper to improve momentum resolution and monitor systematics
- R&D is on-going on all three components
 - developing new technologies
 - building demonstrators with available devices
 - making the transition from a concept to a design
 - following the path to the FCCee feasibility study
 - building collaborations along common lines of developments

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

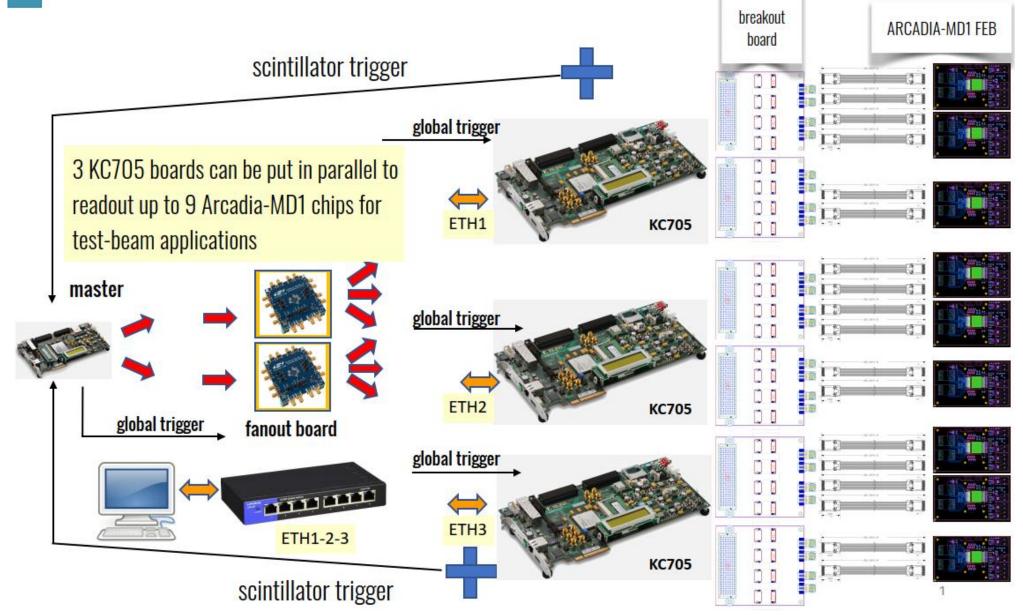
ATLASPIX3 groups involvement

KIT + China + UK + INFN collaboration

Institute of High Energy Physics Chinese Academy of Sciences

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Lancaster



Physics

FCC week, 1 July 2021

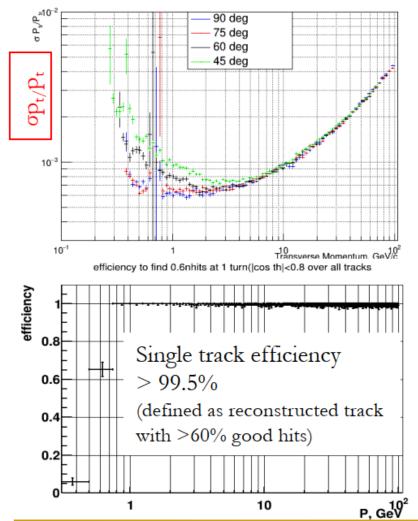
VERSITY OF SOUTH

ARCADIA MD1 test beam setup

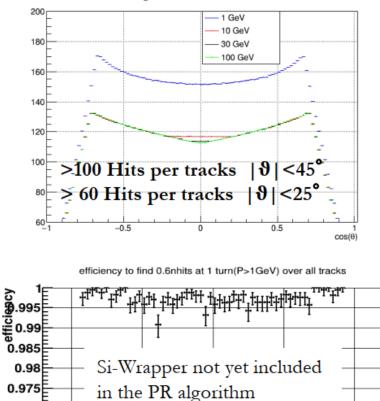
FCC week, 1 July 2021

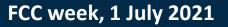
UNIVERSITÀ DEGLI STUDI DI MILANO

ÍNFŇ


IDEA Drift Chamber Performance

Drift Chamber simulation - Review geometry and reconstruction status


assumed: $\sigma_d = 100 \ \mu m$ and (conservative for Si) $\sigma_{Si} = \text{pitch}/\sqrt{12} \ \mu m$


Transverse Momentum Resolution

UNIVERSITÀ DEGLI STUDI DI MILANO

N good Hit DCH vs Theta

A. Andreazza - The IDEA tracking system

-0.5

0

0.5

1

cos theta

0.97

0.965 0.96

0.955

-1

Beam-beam effects

Again, why does it matter?

□ √s is not affected by beam-beam effects, but ...

$$\sqrt{s} = 2\sqrt{E_+^0 E_-^0} \cos \frac{\alpha_0}{2} = 2\sqrt{E_+E_-} \cos \frac{\alpha_2}{2}$$

We measure this ...
• But not that or that.

- It is therefore necessary to find a way to measure $\delta \alpha$ (and therefore $\alpha_0 = \alpha \delta \alpha$)
 - With a precision $\Delta\delta\alpha$, which translates into a precision $\Delta\sqrt{s}$

$$\frac{\Delta\sqrt{s}}{\sqrt{s}} \simeq \frac{1}{4}\alpha\delta\alpha \ \frac{\Delta\delta\alpha}{\delta\alpha} \approx 1.3 \times 10^{-6} \ \frac{\Delta\delta\alpha}{\delta\alpha}.$$

• $\Delta\delta\alpha/\delta\alpha = \pm 100\% \Rightarrow \Delta\sqrt{s} = \mp 120 \text{ keV}$ (with BPMs); $\Delta\delta\alpha/\delta\alpha = \pm 10\% \Rightarrow \Delta\sqrt{s} = \mp 12 \text{ keV}$;

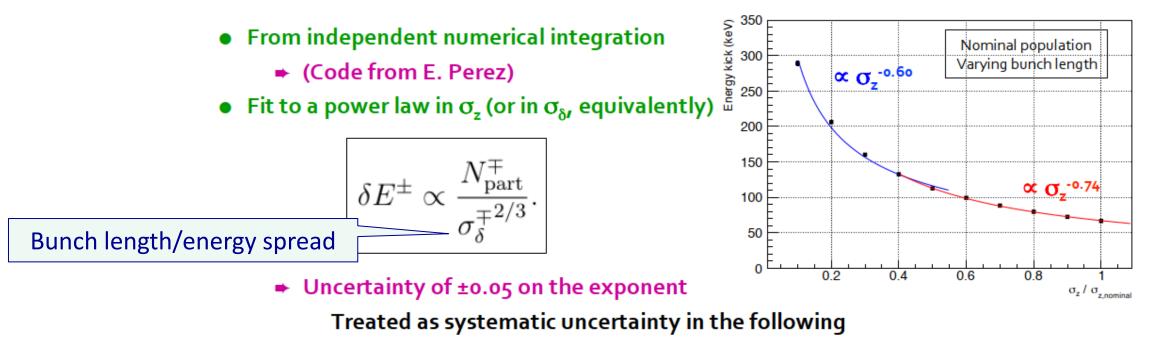
Patrick Janot

FCC week, 1 July 2021

A. Andreazza - The IDEA tracking system

Δ

Extrapolation to N[±] = 0


 \square Energy kicks δE^{\pm} directly proportional to opposite bunch population N^{\mp}

<u>UNIVERSITÀ</u>

MILANO

FCC

• Also increases when opposite bunch length decreases (charge density increases)

Patrick Janot	FCC Week, Brussels 25 June 2019	6
C week, 1 July 2021	A. Andreazza - The IDEA tracking system	

Measurement of $\delta \alpha$

• For equal e⁺ and e⁻ bunch populations, $\delta \alpha$ is proportional to the common δE :

$$\delta \alpha = \frac{1}{\tan \alpha/2} \left(\frac{\delta E_+}{E_+} + \frac{\delta E_-}{E_-} \right)$$

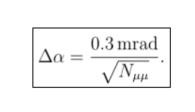
- Therefore, δα follows the same power law as δE:
- The bunch population N_{part} is in turn related to the luminosity: $\mathcal{L} \propto \frac{N_{\text{part}}^2}{\sigma_z} \Leftrightarrow \mathcal{L} \propto \frac{N_{\text{part}}^2}{\sigma_z}$.
- Leading to the remarkable power law:

$$\delta lpha \propto rac{\mathcal{L}^{1/2}}{\sigma_{\sqrt{s}}^{1/6}}.$$

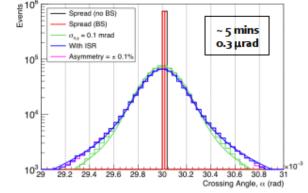
 It turns out that the beam crossing angle, the luminosity, and the centre-of mass energy spread can be measured altogether with μ⁺μ⁻(γ) events [see slide 10]

 $\delta \alpha \propto \frac{N_{\text{part}}}{\sigma_{\sqrt{s}}^{2/3}}$ with $\sigma_{\sqrt{s}} = \sigma_{\delta}^+ \oplus \sigma_{\delta}^-$

• Linear fit of a vs $L^{1/2}/\sigma_{\sqrt{s}}^{1/6}$ will give in turn the values of $\delta \alpha$ and α_0


(

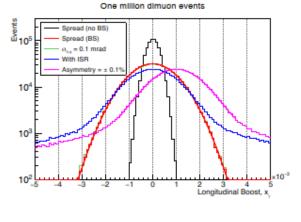
Measurement with $\mu^+\mu^-(\gamma)$ events


From total energy-momentum conservation

In the transverse plane [p_x, p_y, E] : see slide 3

$$\alpha = 2 \arcsin\left[\frac{\sin\left(\varphi^{-} - \varphi^{+}\right)\sin\theta^{+}\sin\theta^{-}}{\sin\varphi^{-}\sin\theta^{-} - \sin\varphi^{+}\sin\theta^{+}}\right]$$

One million dimuon events


- In the longitudinal direction [p₇, E] : see my presentation in Amsterdam and the Energy Calibration paper ٠
 - Longitudinal boost distribution ~ \sqrt{s} spread due to σ_{s}

$$x_{\gamma} = -\frac{x_{+}\cos\theta^{+} + x_{-}\cos\theta^{-}}{\cos(\alpha/2) + |x_{+}\cos\theta^{+} + x_{-}\cos\theta^{-}|},$$

with $x_{\pm} = \frac{\mp \sin\theta^{\mp}\sin\varphi^{\mp}}{\sin\theta^{+}\sin\varphi^{+} - \sin\theta^{-}\sin\varphi^{-}}.$

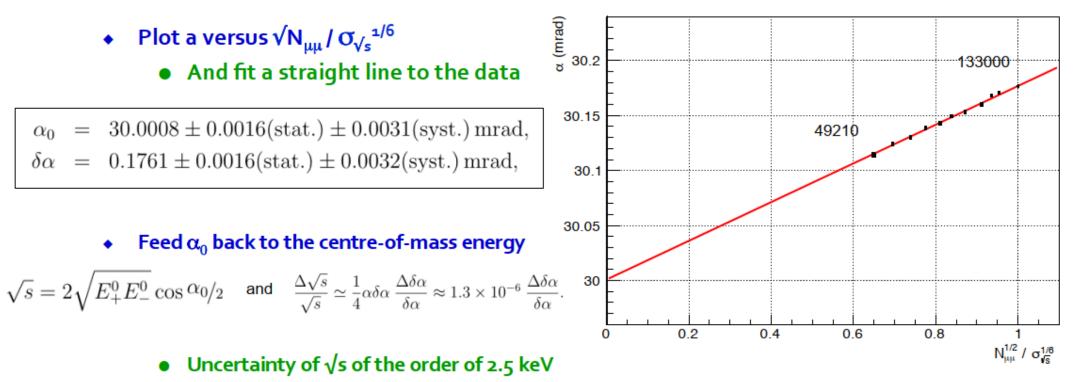
Luminosity directly proportional to N_{uu}

$$\frac{\Delta \sigma_{\sqrt{s}}}{\sigma_{\sqrt{s}}} = \frac{1}{\sqrt{N_{\mu\mu}}}$$
$$\frac{\Delta \mathcal{L}}{\mathcal{L}} = \frac{1}{\sqrt{N_{\mu\mu}}}$$

L

Patrick Janot

UNIVERSITÀ **DEGLI STUDI** DI MILANO


FCC Week, Brussels 25 June 2019

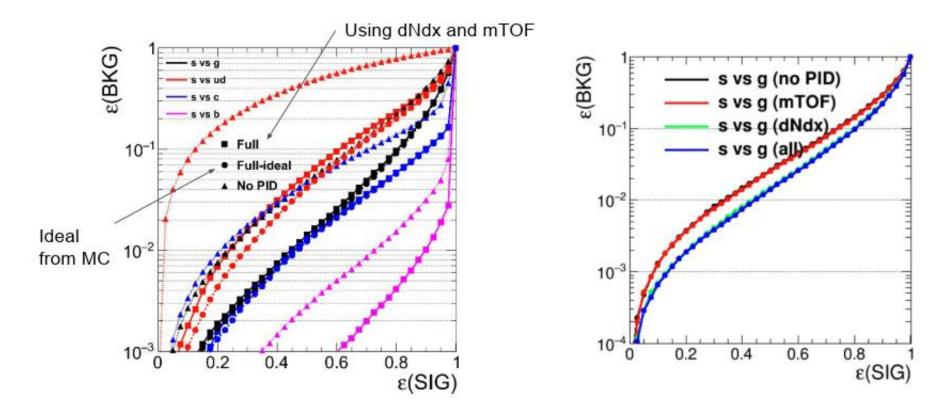
10

FCC week, 1 July 2021

Measurements during the filling period (Z pole)

 $\hfill\square$ Measure α , $\sigma_{\!\sqrt{s}}$ and N_{\mu\mu} for 11 steps of 40 seconds at the Z pole

Well within the requirements, negligible w.r.t. to the beam energy uncertainty (50 keV)


UNIVERSITÀ DEGLI STUD

> FCC Week, Brussels 25 June 2019

11

FCC week, 1 July 2021

- Small room for improvement on the PID, in particular for strange tagging
 - TOF does not contribute as much as dNdx (30 ps resolution enough?)
 - Iow pT tracks are not discriminating ?
 - Can be further improved using timing resolution for neutral K₁ vs n ?

REQUIRES FURTHER INVESTIGATION

FCC week, 1 July

FCC Week - June 2021