

Jet Flavour Tagging at the FCC-ee

Franco Bedeschi, Loukas Gouskos, Michele Selvaggi

June 29, 2021

• Goals:

- Develop a versatile jet flavour tagger for the FCC-ee:
 - Identify with high purity light / strange / charm / beauty jets
 - multi-class classifier

- Understand the detector requirements/optimize design
 - vertexing and PID capabilities of the FCCee detector

Basics of flavour tagging (b/c)

Detector constraints:

Need power pixel/tracking detectors

- Good spatial resolution
- As little material as possible
- Precise track alignment

- Large lifetime
 - b (c) lifetime ~ps (~0.1ps)
 - b (c) decay length: ~5
 (2-3) mm for ~50 GeV
 boost
- Displaced vertices/tracks
 - Large impact parameters
 - Tertiary vertices when B hadron decays to C hadron
- Large track multiplicity
 - ~5 (~2) charged tracks/decay
- Non-isolated e/µ
 - ~20 (10)% in B (C) decays

Basics of flavour tagging (strange)

- Large Kaon content
 - Charged Kaon as track:
 - K/pi separation
 - TOF
 - dEdx/dNdx
 - Neutral Kaons:
 - $K_S \rightarrow \pi\pi$
 - Displaced 2 track vertex
 - 4 photons
 - TOF vs n ?

Detector constraints:

Need power pixel/tracking detectors

- good spatial resolution
- timing detectors
- charged energy loss (gas/silicon)

- MC Samples:
 - MG5+Pythia8 used to generate:
 - $ee \rightarrow ZH \rightarrow vvXX \text{ events } (X: g, ud, s, c, b)$

- Detector response based on Delphes:
 - Including FastTrackCovariance
 - Computes:
 - full track covariance matrix (5x5)
 - Including MS
 - smeared track using the off-diagonal terms
 - path length and dN/dx for various gas mixes
 - Allows fast turn-around when trying different detector options
- Jets clusters with the generalized-kT algorithm using *R*=1.5
 - Similar to the anti-kT algorithm [IRC safe]

IDEA

FCCee detector

- Ideal for flavour identification [hence: measure Higgs couplings]
 - Impact parameter resolution
 - Low material budget tracker (minimise multiple scattering)
 - Small beam-pipe 1.5 cm -- investigating 1 cm
 - PID capabilities
 - dEdx (Si tracker) -- Cluster counting (Drift)
 - Time of flight -- timing layer

Michele Selvaggi

FCC Week - June 2021

Cluster counting dN/dx

- Count number of **primary ionisation** clusters along track path
- Avoids large landau flukes (poisson distributed)
- Requires high granularity
- Module added in Delphes

IDEA detector:

set TrackInputArray TimeSmearing/tracks

set VertexInputArray TruthVertexFinder/vertices

0: assume vertex time tV from MC Truth (ideal case)

2: calculate vertex time as vertex TOF, assuming tPV=0

Time Of Flight Measurement

module TimeOfFlight TimeOfFlight {

1: assume vertex time tV = 0

set OutputArray tracks

set VertexTimeMode 2

• Allows for good K/pi separation at low momenta:

$$t_{\text{flight}} \equiv t_{\text{F}} - t_{\text{V}} = \frac{L}{\beta} = \frac{L\sqrt{p^2 + m^2}}{p}$$

 Need to make assumption on vertex time (crucial for highly displaced K_S) :

Michele Selvaggi

#

FCC Week - June 2021

3 std deviation K/pi separation for tracks with p < 30 GeV

Input variables

Impact parameter (d_o)

• Comparison of input distributions for different jet flavors

FCC-ee simulation (Delphes) FCC-ee simulation (Delphes) normalized normalized s = 240 GeV s = 240 GeV b-jets b-jets 10 10 e⁺e`→ZH →vvjj e⁺e⁻ → Z H → v v jj c-jets c-jets base base -s-jets -s-jets -ud-jets ud-jets gluon-jets gluon-jets 10^{-1} 10^{-} 10^{-2} 10⁻² 10^{-3} 10^{-3} -0.2 0.2 0.4 -0.40 -0.2 0.2 -0.40.4 0 leading track d_{xv} (mm) leading track d₂ (mm)

Impact parameter (d₁)

• More comparisons:

https://selvaggi.web.cern.ch/selvaggi/FCC/FCCee/FlavourTagging/

Michele Selvaggi

Variable	Description						
Kinematics							
$\log E$	logarithm of the particle's energy						
θ	absolute value of particle's theta						
ϕ	absolute value of particle's azimuhtal angle						
$\Delta heta(ext{jet})$	difference in θ between the particle and the jet axis						
$\Delta \phi({ m jet})$	difference in azimuthal angle between the particle and the jet axis						
	Displacement						
d_z	longitudinal impact parameter of the track						
d_z/σ_{d_z}	significance of the longitudinal impact parameter						
d_{xy}	transverse impact parameter of the track						
$d_{xy}/\sigma_{d_{xy}}$	significance of the transverse impact parameter						
$\eta_{ m rel}$	pseudorapidity of the track relative to the jet axis						
$p_{\mathrm{T,rel}}$ ratio	ratio of track momentum perpendicular to the jet axis and track momentum						
$p_{\rm par,rel}$ ratio	ratio of track momentum parallel to the jet axis and track momentum						
$d_{ m 3D}$	signed 3D impact parameter of the track						
$d_{ m 3D}/\sigma_{ m 3D}$	signed 3D impact parameter significance of the track						
trackDistance	distance between the track and the jet axis at their point of closest approach						
	PID						
q	electric charge of the particle						
$m_{ m t.o.f.}$	mass calculated from time-of-flight						
dN/dx	number of primary ionisation clusters along track						
isMuon	if the particle is identified as a muon						
isElectron	if the particle is identified as an electron						
isPhoton	if the particle is identified as a photon						
isChargedHadron	dHadron if the particle is identified as a charged hadron						
isNeutralHadron	if the particle is identified as a neutral hadron						

Inputs: 50 particles/jet

Training details:

- 1M jets split equally between classes
- 30 epochs
- Still room for improving the training details

Jet as "particle" cloud

Point cloud:

- points (un-ordered)
- input features: (x,y,z) 3D coordinates

Learn "local" structure, move to more "global" features

Graph Neural networks:

Generalizing Convolutional neural network for un-ordered/sparse images

Particle cloud:

- particles (un-ordered)
- input features:
 - 2D coordinates (eta x phi)
 - momentum
 - charge/ID
 - displacement ...

DGCNN: [arXiv:1801.07829]

ParticleNet: [arXiv:1902.08570]

b-tagging

WP	Eff (b)	Mistag (g)	Mistag (ud)	Mistag (c)
Loose	90%	2%	0.2%	3%
Medium	80%	0.7%	<0.1%	0.4%

c-tagging

WP	Eff (c)	Mistag (g)	Mistag (ud)	Mistag (b)
Loose	90%	8%	7.5%	5%
Medium	80%	3%	0.9%	2.5%

Performance (smaller beampipe / closer vtx)

b-tagging

c-tagging

Mod1: additional vertex layer @1 cm

- Effect is small in b-tagging:
 - Effect is significant in c-tagging, as expected
 - Gain ~ 10-30% background rejection (vs. gluon and light)
 - possibly explore thinner beam-pipe (to limit MS)

- Small room for improvement on the PID, in particular for strange tagging
 - TOF does not contribute as much as dNdx (30 ps resolution enough?)
 - Iow pT tracks are not discriminating ?
 - Can be further improved using timing resolution for neutral K_1 vs n?

REQUIRES FURTHER INVESTIGATION

Performance (strange/gluon)

strange-tagging

gluon -tagging

e(BKG)	· 1	 g vs l g vs d))	J	Ll	
~	10 ⁻¹	 g vs ı	bu			4
	10 ⁻²	6			*****	/
	10 ⁻³	0.2	0.4	 0.6	0.8 ε(S	

WP	Eff (s)	Mistag (g)	Mistag (ud)	Mistag (c)	Mistag (b)	WP	Eff (g)	Mistag (ud)	Mistag (c)	Mistag (b)
Loose	90%	20%	40%	10%	1%	Loose	90%	25%	9%	3%
Medium	80%	10%	20%	6%	0.4%	Medium	80%	15%	5%	2%

Higgs couplings: $H \rightarrow cc$

\sqrt{s} (GeV)	24	10	365		
Luminosity (ab^{-1})	ц	5	1.5		
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu \bar{\nu}$ H	HZ	$\nu \bar{\nu} H$	
$H \rightarrow any$	± 0.5		± 0.9		
$H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9	
$H \rightarrow c\bar{c}$	± 2.2		± 6.5	± 10	
${ m H} ightarrow { m gg}$	± 1.9		± 3.5	± 4.5	
${\rm H} \rightarrow {\rm W}^+ {\rm W}^-$	± 1.2		± 2.6	± 3.0	
$\mathrm{H} \rightarrow \mathrm{ZZ}$	± 4.4		± 12	± 10	
$\mathrm{H} \to \tau \tau$	± 0.9		± 1.8	± 8	
$\mathrm{H} ightarrow \gamma \gamma$	± 9.0		± 18	± 22	
$H \rightarrow \mu^+ \mu^-$	± 19		± 40		
$H \rightarrow invis.$	< 0.3		< 0.6		

Ref: Patrick's talk at the CDR Symposium; March 2019

- Stat limit [i.e. no BKG]: δ(σxBR)/σxBR (%) ~0.6%
- No BKG rejection: δ(σxBR)/σxBR (%) ~2.9%

Results look promising

\bigcirc Higgs couplings: H \rightarrow ss

```
BR(H\rightarrow ss) = BR (H\rightarrow cc) (m<sub>s</sub>/m<sub>c</sub>)<sup>2</sup> ~ 2.3 10<sup>-4</sup>
```

FCCee: σ_{ZH} ~200fb, L ~ 5 ab⁻¹ (2 IP): ~**1M ZH** [600k H \rightarrow bb, 100k H \rightarrow gg, 30k H \rightarrow cc, **200 H** \rightarrow ss]

Use Loose WP: [s-tag: 90%, g-mist: 10%, c-mist: 1%, b-mist: 0.4%

- Scenario 1: $Z(\rightarrow all)H$:

 $N_{ss} = 150, N_{b} = 1000$ (neglecting ee \rightarrow VV backgrounds) Back-of-the envelope estimates

THOROUGH STUDIES NEEDED

δ(σxBR)/σxBR (%) ~ 21 % (~ 5σ) [no systematics, only higgs backgrounds, no combinatorics]

- Scenario 2: $Z(\rightarrow vv)H$:

 $N_{ss} = 30$, $N_{b} = 200$ (neglecting ee \rightarrow vvqq and ee \rightarrow qq, can be important given large q \rightarrow s fake prob.)

δ(σxBR)/σxBR (%) ~ 49% (~ 2σ) [no systematics]

Summary & outlook

- A first version of a jet identification algorithm based on PF candidates and PID and advanced ML in place
 - Multi-class classifier b/c/s/ud/g
 - Results promising, in particular for charm and strange tagging
- PRELIMINARY conclusions:
 - adding an additional vertex layer does not tremendously improve b-tagging performance (resolution of ~ 2um already outstanding)
 - but improves charm tagging
 - There seems to be room for improving strange tagging with more powerful PID
- Next [short-term] steps:
 - propagate detector design choice to final sensitivity
 - address tagger calibration (at the Z pole)
 - Provide framework for training/testing with the FCCSW

Backup

Impact parameter performance

Credits to Sylvie Braibant

IDEA detector:

Michele Selvaggi

FCC Week - June 2021

Input variables

• Comparison of input distributions for different jet flavors

• More comparisons:

https://selvaggi.web.cern.ch/selvaggi/FCC/FCCee/FlavourTagging/

Michele Selvaggi

Convolution on point cloud: EdgeConv

EdgeConv: convolution on a graph

- **point cloud** is treated as **graph**, where each point is a **vertex**
- **local patch** defined by finding k-nearest neighbours
- **convolution** function:
 - o define "edge feature" for each center-neighbour pair Key point:

$$\bullet e_{ij} = h(x_i, x_j)$$

• aggregate all the features symmetrically:

•
$$\mathbf{x}'_i = \text{mean}_j \mathbf{e}_{ij}$$

Generalizing CNN for un-ordered/sparse images

Flavour tagging using ParticleNet

- Developing a flavour tagging algorithm based on ParticleNet
 Jet is represented as a "particle cloud"
- Follow a hierarchical learning approach:
 - **First:** Learn "local" structures; **Then:** move to more "global" features
 - Treat the particle cloud as a graph
 - Particles are the vertices of the graph

Relationships between the particles are the **edges** of the graph

Identify "neighboring" particles

Michele Selvaggi

Jet:

As particle cloud

FCC Week - June 2021

ParticleNet

- **local neighborhood** information automatically incorporated
- EdgeConv layers can be stacked (as CNNs), and learn local (shallow layers) and global features (deep layers)
- **new features** provide new coordinates (in some abstract latent space) to compute "local patch" in new iteration

EdgeConv block

ParticleNet architecture

Designing a jet flavour tagging algorithm

- How to represent a jet is one of the key aspects of algorithms for jet tagging
 - Improve performance \rightarrow extend physics reach
 - \circ Lead to fresh insight into jets \rightarrow deepen our understanding of jet physics

- Particles [associated to each jet] are intrinsically unordered
 - \circ i.e., ordering by p_T (particle) or displacement from PV: suboptimal
 - Primary information: 2D coordinates in theta-phi space
 - Include additional features / particle: energy, displacement, charge, track quality, PID ...

Performance vs theta (b/c)

b-tagging

c-tagging

PRELIMINARY !! (LOW STATS TRAINING)

Michele Selvaggi

Comparison: IDEA vs. CLD

- No big differences between in input variables between IDEA & CLD
 - small difference in material budget observed on light jets since dxy ~ 0
 - expect slightly better performance for IDEA detector for discrimination vs light

