

FCC Week 2021: Summary of Accelerator Sessions 24 talks FCC-ee & FCCIS WP2, 10 talks FCC-ee other, 3 talks FCC-hh, 3 talks FCC-eh \rightarrow 40 talks in total !

> Ilya Agapov, DESY Frank Zimmermann, CERN

> > Friday, 2 July 2021

Overview

Version: 0.14 Date

Date: 17.06.2021

FCC Week 2021 Programme

Day	Monday 28 June	Tuesday	29 June	Wednesday 30 June			Thursday 1 July		Friday 2 July	Day
Time	Plenary	Parallel 1	Parallel 2	Parallel 1	Parallel 2	Parallel 3	Parallel 1	Parallel 2	Plenary	Time
08:30-09:00										08:30-09:00
09:00-09:30										09:00-09:30
09:30-10:00	Opening	Technology R&D	(Integrate	SRF Technologies	FCC-hh accelerator		FCC-ee IR and MDI	Technical Infrastructures	Summaries	09:30-10:00
10:00-10:30			Europe)							10:00-10:30
10:30-11:00					•					10:30-11:00
11:00-11:30		FCC-ee	ECCIS W/P4	FCC-ee	Software and		FCC-ee			11:00-11:30
11:30-12:00	FCC feasibility phase	layout,	(Impact &	electron cloud	Physics	EASITrain	impedance & collective	Technical Infrastructures	Summaries	11:30-12:00
12:00-12:30		overview, with booster	Sustainability)	& vacuum	Highlights		effects			12:00-12:30
12:30-13:00										12:30-13:00
13:00-13:30										13:00-13:30
13:30-14:00		SRF: Direction for R&D						SRF Technologies		13:30-14:00
14:00-14:30	Physics		Collaborative				ECC on other			14:00-14:30
14:30-15:00	Experiments &		Writing & Publishing	FCC-eh	Civil Engineering		applications &			14:30-15:00
15:00-15:30	Detectors		tools				upgrades			15:00-15:30
15:30-16:00			•		1					15:30-16:00
16:00-16:30	Physics	FCC-ee optics,	Physics		FCCIS			Detector		16:00-16:30
16:30-17:00	Experiments &	stay-clear,	Performance	FCC-ee injector complex	communicatio n &		Technology R&D	Detectors		16:30-17:00
17:00-17:30	Detectors	collimation	highlights		engagement					17:00-17:30

Parameters, Layout

Tuesday from 11h00 – FCC-ee & FCCIS WP2: Parameters, Layout, Overview, with Booster – Eugene Levichev, BINP						
Parameters – Update and Plan	D. Shatilov, BINP					
Optics and Layout – Update and plan	K. Oide, KEK & CERN					
Experience at SuperKEKB	J. Keintzel <i>,</i> TU Vienna & CERN					
Top up injection	M. Aiba, PSI					

impedance effect & beam-beam

 \rightarrow reduced region in tune diagram at Z,

 Q_x to be controlled to 10⁻³ level

→ larger momentum compaction, 45 deg optics (in addt'n to 60 and 90 deg)

600 or 650 MHz RF at the Z ? 3rd harmonic cavities to control no of bunches ?

transient beam loading : new effect, tighter tolerances for b-b flip-flop & top up

4 IPs and realistic optics with errors, corrections & related tolerances

Optics & Layout – Update and Plan

2 IP

B

RF

D

Coll 2.8km

Extr 1.4 kr

Exp

Arc (1 = 16km R = 13km)

DS (L=0.4km,R=17.3km

RF

Mini-arc (l=3.2km 8=13kr

superperio-

dicity crucial !

Katsunobu Oide

Lawout	ID	Shafta circumforonco Arc r		Arc radius of	short arc	long arc	str	aight sectic	ons
Layout	ШР	Snarts	circumierence	curvature	A-B, F-G, G-H,	B-D, D-F,	A, G	B, F, H, L	D, J
~CDR			97750	13329	4448	16489	1.4	1.4	2.8
17.08	2	12	96109	12922	5782	14517	1.4	1.4	3.25
19.03			91350	12380	3864	15582	1.36	1.36	2.69
20.03	4	8	95713	13058	10256	10256	1.45	2.0	1.45

FUTURE CIRCULAR COLLIDER

lattice periodicity	RF (stations, location)	momentum acceptance (%)
4	4, symmetric	-2.8, +2.5
4	4, odd	±1.7
2	4, odd	±1.0
4	4, symmetric	-2.8, +2.5
4	2, symmetric	-2.8, +2.5

new world record luminosity 3.12x10³⁴ cm⁻²s⁻¹ achieved last week (22 June 2021); beam currents still much below design value

- LER: 80/1 mm with 80% CW
- HER: 60/1 mm with 40% CW

Top-up injection

Conventional & MK injection

FUTURE

CIRCULAR

COLLIDER

1-mm septum ?

•

- A la ALS septum (1.5 mm): Eddy-current septum with short pulse might be a choice if the pulse length can be compatible with filling scheme; Skin depth of copper ~0.2 mm at 100 kHz (10 us pulse)
- Low field Lambertson septum seems attractive choice

Optics integration

- Different operation mode \rightarrow Different beam emittance
 - For off-axis CI, only need to adjust bump height
 - For off-axis MKI, need to change optics, adjusting stored and injection beam sizes to fit a fixed kicker transverse profile

For on-axis CI and MKI, need to change optics to introduce Dx Off-energy (on-axis) injection is applicable to ttbar and possibly to Higgs while not to Z and W because of limited off-energy dynamic aperture

Summary and Next steps

- Previous studies revealed that top-up injection • into FCC-ee collider is feasible
- Next steps ٠
 - Optics integration
 - Tracking study
 - Further investigation needed to establish failure scenarios
 - Filling scheme update, etc.

Tuesday from 14h00 – FCC-ee and FFCIS WP2: Optics Correction, Beam Stay-Clear, Dynamic Aperture, Collimation – Eliana Gianfelice-Wendt, FNAL

Status and plans for optics corrections and emittance performance	Tessa Charles, Liverpool
Robust modelling of FCC-ee with analytical equations and simulations	Leon van Riesen Haupt , CERN
Multicode comparison	Felix Carlier, EPFL
Collimation optics	Michael Hofer, CERN
Aperture and Collimation	Andrey Abramov, CERN

Optics corrections & emittance

Correction Strategy (2/2)

- Final correction (at 100% sextupole strength)
 - · Additional coupling, dispersion and beta-beating correction was applied.
 - Step through corrections until beta beating threshold is reached (trade-off between beta beating and vertical emittance can be varied).
 - Vary SV cut off values

Vertical dispersion

After correction

FCC-ee emittance tuning results

RMS misalignment and field errors tolerances:

Туре	ΔX	ΔY	ΔPSI	ΔS	Δ THETA	ΔPHI
	(μm)	(μm)	(μrad)	(μm)	(μrad)	(μrad)
Arc quadrupole*	50	50	200	150	100	100
Arc sextupoles [*]	50	50	200	150	100	100
Dipoles	1000	1000	300	1000	-	-
Girders	150	150	-	1000	-	-
IR quadrupole	100	100	250	200	100	100
IR sextupoles	100	100	250	200	100	100
BPM**	40	40	100	-	-	-

* misalignments relative to girder placement

** misalignments relative to quadruple placement

Type	Field Errors
Arc quadrupole*	$\Delta k/k = 2 \times 10^{-4}$
Arc sextupoles*	$\Delta k/k = 2 imes 10^{-4}$
Dipoles	$\Delta B/B = 1 \times 10^{-4}$
Girders	
IR quadrupole	$\Delta k/k = 2 \times 10^{-4}$
IR sextupoles	$\Delta k/k = 2 \times 10^{-4}$

ttbar (182.5 GeV) 4IP lattice, after correction strategy:

IR magnets alignment - transverse misalignments (ΔX and ΔY)

Туре	$\Delta X \ (\mu m)$	$\Delta Y (\mu m)$	$\Delta PSI \ (\mu rad)$	$\Delta S (\mu m)$	Δ THETA (μ rad)	$\Delta PHI \ (\mu rad)$
IR quadrupole	varied	varied	250	200	100	100
IR sextupoles	varied	varied	250	200	100	100
All other magnets			as listed i	n Table on s	slide 7	

Code benchmarking performed

Analytical studies of emittance sensitivity can help define alignment strategy

Estimate using analytical formulas

Formulas readily available in the literature, e.g. <u>SLAC-PUB-4937</u>

$$\frac{\epsilon_y}{\langle y_{sext}^2 \rangle} \approx \frac{J_x \left(1 - \cos(2\pi\nu_x)\cos(2\pi\nu_y)\right)\epsilon_x}{J_y \left(\cos(2\pi\nu_x) - \cos(2\pi\nu_y)\right)^2} \sum_{sext} \beta_x \beta_y \left(\frac{k_2 L}{2}\right)^2 + \frac{J_z \sigma_\delta^2}{\sin^2(\pi\nu_y)} \sum_{sext} \beta_y \eta_x^2 \left(\frac{k_2 L}{2}\right)^2$$

 $\frac{k_2L}{2} \rightarrow k_1L$ and $\langle y_{sext}^2 \rangle \rightarrow \langle \theta_{quad}^2 \rangle$ for quads

Robust Modelling w. Equations & Simulations Felix Carlier

Results for Higgs physics '217' lattice without radiation

Excellent agreement between SAD, Bmad and pyAT

- Larger discrepancy with pyAT. Perhaps:
 - Fringe fields, nr. of slices? Under study.

FUTURE CIRCULAR COLLIDER

Aperture and collimation

<mark>Andrey Abramov</mark>

FUTURE CIRCULAR COLLIDER

SixTrack-FLUKA coupling	Merlin++	PVAT
Framework linking tracking in SixTrack and matter interactions in FLUKA, used for proton and ion collimation studies for the LHC, HL- LHC, FCC-hh.	Tracking code originally designed for electron beams. Used for studies for the ILC and its damping rings, as well as for proton collimation studies for the LHC.	Python interface to the tracking library Accelerator Toolbox. Activel used for studies for light sources such as ESRF.
 Required developments: Implement synchrotron radiation in SixTrack. Demonstrate tapered lattice tracking in SixTrack. 	 <u>Required developments:</u> Benchmark the tracking with radiation and tapering. Implement a connection with a scattering routine for collimator interactions. 	 Required developments: Implement a connection wit a scattering routine for collimator interactions. Build a workflow for collimation studies.

Layout and optics for a collimation section

Michael Hofer

Optics

FUTURE CIRCUL

COLLIDER

First integration into Z- and $t\bar{t}$ -lattice

AR

• Of particular interest since operation modes with the highest stored beam energy (Z with 20 MJ) and highest beam energy ($t\bar{t}$ with 182.5 GeV)

FCC-hh

Wednesday from 9h00 –FCC-hh – Frank Zimmermann, CERN						
Status and plans for FCC-hh optics studies	Massimo Giovannozzi, CERN					
Modifications of injection and beam dump systems for new collider layout	Wolfgang Bartmann, CERN					
Status and plans for FCC-hh collimation	Roderik Bruce, CERN					

Status and plans for FCC-hh optics studies

FUTURE

Improved layout with FCC-ee and FCC-hh IPs at same transverse position -Advantages:

- Size of detector cavern reduced
- Re-use FCC-ee detector for FCC-hh
- Tunnel width reduced over 2 x 500 m

- Increase filling factor
- Simplify production (a single magnet type for the arcs)

Injection

FUTURE CIRCUL

COLLIDER

8 point options will require significantly more TL magnets

Joining the collider tunnel as early as possible- this requires a careful consideration of integration and cross-talk

Extraction – New Baseline

Old baseline: working backup solution

- Based on superferric Lambertson septa (1.3-1.55T / ~184m with 25 mm septum blade)
- Septa layout requires double plane extraction
- Highly segmented extraction kicker system (300 kicker)


```
→ Higher field with same apparent
septum blade thickness (25mm)
                       a new baseline:
```

- used on novel septa: SuShi (3.2T) and Truncated CosTheta (4T). Total system length ~70m
- Septa Layout requires single plane extraction (vertical)

MSD

OD

Reduced kicker segmentation, still highly

Failure scenarios analyzed

D. Barna: Superconducting Shield (SuShi) septum

- 3.2 T
- Measurements on first prototype conducted
- Apparent septum blade: 25mm

Can reduce system length to 450 m for injection equipment

 \rightarrow can potentially be reduced to 20mm using NbTi for the shield (reduced kick strength)

Length reduction from 2.8 km to 2.1 km \rightarrow likely possible to find a feasible concept

MKD

New generator technologies required and studied

Wolfgang Bartmann

Thermo-mechanical response, p 12 min lifetime, w FLUKA & ANSYS

 most loaded collimators (vertical primary with highest peak power density 50kW/cm³, first secondary w highest total power load 92 kW)

Roderik Bruce

Thermomechanical response, *Pb* secondary beam

FUTURE CIRCULAR

COLLIDER

DS collimator

Electron cloud and vacuum

Wednesday from 11h00 – FCC-ee & FCCIS WP2: Electron cloud & vacuum – Kyo Shibata, KEK

Arc vacuum system & synchrotron radiation	Roberto Kersevan, CERN
Synchrotron Radiation studies for the FCC-ee arc with FLUKA	Barbara Humann, CERN &TU Vienna
Key surface parameters	Roberto Cimino, INFN
Electron cloud simulations for arc dipoles	Fatih Yaman, IETY
Electron cloud simulations for arc quadrupoles	Damian Ayim, UADY

CIRCULAR Arc vacuum system and synchrotron radiation Roberto Kersevan

Thin (150 nm) NEG-coating to obtain low PEY and SEY ; "thin" to minimize RW impedance Even thin NEG-coating gives large distributed pumping speed; + discrete photon absorbers

B1: 25 absorbers at \sim 5.6 m average spacing B2: no absorbers

Future work: prototyping and experiments

- test prototype chambers at light source (KARA/KIT?)
- test behavior of thin NEG-coating at light source
- define deposition technique for dipole vacuum chambers
- in-situ measurement of photoelectron yield at light ...

SR studies for arcs with FLUKA

<mark>Barbara Humann</mark>

Key Vacuum Surface Parameters for FCC-ee Roberto Cimino

FUTURE CIRCULAR

COLLIDER

V CIRCULAR e-cloud simulations for FCC-ee DR & collider dipoles Fatih Yaman COLLIDER

FCC-ee DR, Injection : PyECLOUD & Furman-Pivi Model

SEY values scanned for the smallest radius and the highest initial electron density value

- SEY ≤ 1.5: electrons vanish for the initial electron densities 1e12[m⁻³]
- SEY = 1.7: no electron build up from the initial seeds observed
- initial electron density 1e12[m⁻³], beam pipe radius=10mm expresses electron density oscillations both for SEY=1.9 and SEY=2.1

Fatih Yaman, 'Electron-Cloud Simulations for the FCC-ee Collider Arcs and for the e+ Damping Ring', 121st FCC-ee Optics Design Meeting, July, 2020

Average of min. for center e⁻ density, FCCee Collider: PyECLOUD

- for the SEY=1.1, electron density for the largest photoelectron generation rate is slightly higher
- impact of larger SEY dominates the effect of photoelectron generation rate

for bunch spacing > 15ns the density values do not change drastically

Fath Yaman, 'Electron cloud simulations for CC-ee Collider Dipoles: Comparisons of SEY Models, Longer Bunch Spacing, and Higher Intensity', 135th FCC-ee Optics Design Meeting, 6th FCCIS WP2.2 Meeting, March 2021

FCC-ee DR, Extraction:VSim & Furman-Pivi Model

e-cloud simulations for arc quadrupoles

FUTURE CIRCULAR

Damian Ayim

FCC-eh

Wednesday from 14h00 – FCC-eh – Gian	luigi Arduini, CERN
FCC.eh: Update and ERLs	Max Klein, U Liverpool
LHeC Racetrack as Injector to FCC-ee	Yannis Papaphilipppou, CERN
Interaction Region Design Optimization	Kevin Andre, U Liverpool

FCC-eh: Update and ERLs

Max Klein

60 x 50000 GeV²: 3.5 TeV ep collider

Operation: 2050+, Cost (of ep) O(1-2) BCHF

Concurrent Operation with FCC-hh

FCC CDR: Eur.Phys.J.ST 228 (2019) 6, 474 Physics Eur.Phys.J.ST 228 (2019) 4, 755 FCC-hh/eh

Future CERN Colliders: 1810.13022 Bordry+

A selection of past, present and proposed ERL facilities: Power = $E_e I_e$

LHeC Racetrack as Injector to FCC-ee

Value

0.5 $\mathbf{2}$

3

49.19499

24.95

20

30

8.114

801.58

19.73

130

5

0.918/1.5

4

7

29.6

289.8

112(28)

5.332

50 x 7000 GeV²: 1.2 TeV ep collider

LHeC RLI would allow

- direct injection into collider at Z and perhaps W
- higher e- current than CDR baseline

e/p separation scheme optimisation

Magnet design with M. Liebsch using ROXIE in order to obtain a scaled half quadrupole.

and electron beam enveloppes

FUTURE CIRCULAR

COLLIDER

HERA "QM" magnet design

LHeC Interaction Region optimisation: proton & electron

Kevin Andre

LHeC front-to-end tracking results and scaling to FCC-eh

e/p separation scheme optimisation

B is ranging from 159 mT to 170 mT

Excellent beam transmission and energy recovery efficiency is achieved, including synchrotron radiation and beam-beam disruption.

Curvilinear distance normalised to the number of turns [turns

 $1/4 C_{LHC}$ 1/5 CLHC ERL size 1/3 CLHC $\gamma \varepsilon_{x}^{inj}$ [µm rad] 25.4 22.7 15.1 $\Delta p/p$ at IP 0.021 % 0.029 % 0.041 % 99.93 % 98.89 % transmission 98.40 % 97.9% 96.7 % 95.4 % energy recovery

Table 2: Results of the tracking simulations including beambeam and synchrotron radiation for several ERL designs.

The results of energy recovery for 1/3 of LHC with 60 GeV will be around 97 % energy recovery since the losses in the arcs are higher (1.9 GeV).

The last optimisation combines the previous steps, using a Multi-Objective Genetic Algorithm : NSGA-II

Wednesday from 16h00 – FCC-ee : Injector complex – Tor Raubenheimer, SLAC			
Overview and layout	Paolo Craievich, PSI		
Linac and electron sources	Alexej Grudiev, CERN		
Positron source	Iryna Chaikovska, IJClab		
Filling schemes through injector chain	Salim Ogur, IJCLab		
Full energy booster	Antoine Chance, CEA		

 \rightarrow Status in CDR: The bunches are accumulated in the collider in less than 20 min, for the initial filling, while in less than 2 min for the top-up Option 1:

CHART collaboration

FUTURE CIRCULAR

COLLIDER

Extracted from the review report

- 1. adopt new layout for 6 GeV with only one energy in each linac & e+ production at 6 GeV
- 2. linac RF frequency should be chosen to be an appropriate multiple of the FCC-ee collider RF frequency to make potential future injection operation much easier to perform
- 3. check the acceptance of the booster ring in terms of emittance because this parameter will greatly influence the injector itself, i.e. RF guns and damping ring
- 4. carry out start-to-end simulations for the new baseline layout
- 5. rough relative cost comparison for new and old layout (probably only marginal differences)
- 6. concentrate on 2 bunch per pulse conservative scheme as recommended by review, with e+ target inspired by SLC's
- study of 6-to-20 GeV linac, including rough cost estimate; e+ source performance at e- energy of 20 GeV
- 8. consolidation and confirmation of e+ yields expected at 6 and 20 GeV
- 9. preparation of PSI e+ experiment based on a target compatible with FCC 2-bunch operation

Positron Source R&D at SwissFEL

Linac and electron sources

<mark>Alexej Grudiev</mark>

parameter	Baseline	Alternative	Comments
Ring for injection	PBR	BR	Destination
Injection energy [GeV]	6	20	Fixed
Bunch population [1e10]	2.1	2.1	Nominal
Number of bunches	2	2	
Bunch spacing [ns]	15, (17.5, 20)	15, (17.5, 20)	To be defined
Normalized transverse emittances (RMS): γε_x,y [um]	50, 50	50, <mark>8</mark>	Vertical acceptance of BR
Bunch length (RMS) [mm]	~1	~1	<10 ring acceptance
Energy spread (RMS) [%]	~0.1	~0.1	

e- source 5nC bunch

B strength

and profile

rf phase

Distance L

UTURE

CIRCULAR

COLLIDER

Summary

- Specification of the preliminary design parameters has been done together with the other WPs
- Adequate tools for RF and BD simulations have been identified and/or developed
- Linac design and optimization work can start now
- Linac 1 has been identified as a starting point for the design and optimization studies, which will begin soon after BD postdoc will join WP1
- Electron source based on photo-cathode RF gun looks promising to meet FCC-ee injector requirements

RF components reviewed

The complete filling for Z running => Requirement @ Injection ~2.1 × 10¹⁰ e+/bunch (3.5 nC)

 N_{e} /bunch × $Y_{e+/e}$ \geq 3.5 nC/bunch × 2

*A safety margin of 2 is currently applied for the whole studies.

1.3. Fill From the Scratch in the CDR

FUTURE CIRCULAR

COLLIDER

2.1. Multi-bunch Linac Parameters

Linac: 200 Hz 2 bunches per RF pulse

•	SPS:	

Accumulation of 2080 bunches	:	5.2 s
Emittance cooling (Damping time 0.1	s):	0.7 s
Ramp up time (6 - 20 GeV)	:	0.2 s
SPS Cycle time	:	6.3 s

Top-up Booster:

BR Cycle time	:	51.74 s
Ramp up time (20 - 45.6 GeV)	:	0.32 s
Emittance cooling (Damping time 0.1 s)	:	0.7 s
Accumulation of 8 SPS Trains	:	50.4 s

Collider:

10 BR Injections for each species will result the collider to be filled for Z- mode in 1035 seconds (17m15s)

Linac: . 100 Hz 25 bunches per RF pulse

SPS:

Accumulation of 1250 bunches : 0.5 s Emittance cooling (Damping time 0.03 s): 0.12 s Ramp up time (6 - 20 GeV) : 0.175 s **SPS Cycle time** : 0.97 s

- Top-up Booster: Accumulation of 14 SPS Trains : 50.4 s Emittance cooling (Damping time 0.1 s) : 0.4 s Ramp up time (20 - 45.6 GeV) : 0.32 s **BR Cycle time** : 14.72 s
- Collider: 10 BR Injections for each species will result the collider to be filled for Z- mode in 294.4 seconds (4m54s)

Full energy booster

- A larger momentum compaction at Z (45.6 GeV) and W (80 GeV) operation mode to handle microwave instability and IBS → phase advance of 60°/60°.
- ► A smaller equilibrium emittance (smaller \mathscr{I}_5) at H (120 GeV) and $t\bar{t}$ (182.5 GeV) operation mode \rightarrow phase advance of 90°/90°.
- Non-interleaved sextupole scheme gives the largest dynamic aperture.

FUTURE <u>CI</u>RCULAR

COLLIDER

Automated adaptation to MR layout modification

RingArc FODO cellImage: Image: Image

s [m]

- Determination of the minimum injection energy.
- New booster optics for the case of a 4 IPs layout.

MDI

Thursday from 9h00 – FCC-ee & FCCIS WP2: IR & MDI – Wolfgang Hillert, U. Hamburg

Overview, plan and open questions	Manuela Boscolo, INFN
Beam-beam background & beamstrahlung	Andrea Ciarma, CERN
News on the Q1 magnet prototype	Mike Koratzinos, MIT
Mechanical design of the MDI	Francesco Fransesini, INFN
IR alignment system	Leonard Watrelot, CERN

Overview

IDEA

=AlBeMet162

<mark>Manuela Boscolo</mark>

Sintilatoriron HCAL

Based on CLIC detector design

- · Silicon-based vertex and tracker
- · Coil outside calorimeter

CLD

2 Tool Uttes light Tracker Pre-shower counter 13 m

New, innovative

- Silicon vertex detector
- Dual-readout calorimeter
- Short-drift, ultra-light wire chamber
- · Thin and light solenoid coil inside calorimeter system

Geant4 model for detector background studies

Beamstrahlung

FUTURE CIRCULAR COLLIDER

Integration with the **key4hep** framework

Bhabha and Beamstrahlung

<mark>Andrea Ciarma</mark>

Tracking of spent beam

Q1 Magnet prototype

<mark>Mike Koratzinos</mark>

	Start position	Length	B' @Z	B'@W	В'@Н	B'@tt
	(m)	(m)	(T/m)	(T/m)	(T/m)	(T/m)
QC2L2	-8.44	1.25	25.05	43.82	61.30	69.50
QC2L1	-7.11	1.25	-0.18	0.00	7.32	56.85
QC1L3	-5.56	1.25	-19.35	-34.38	-53.08	-99.98
QC1L2	-4.23	1.25	-18.57	-32.94	-53.07	-99.98
QC1L1.1	-2.9	0.7	-40.95	-70.00	-99.71	-95.39
QC1L1.2	2.2	0.7	-40.95	-70.00	-99.71	-95.39
QC1R2	2.98	1.25	-25.44	-37.25	-51.94	-100.00
QC1R3	4.31	1.25	-19.54	-39.51	-53.65	-91.87
QC2R1	5.86	1.25	14.64	16.85	-2.65	37.19
QC2R2	7.19	1.25	19.50	44.32	67.52	94.43

FUTURE CIRCULAR COLLIDER

M. Koratzinos

All multipoles are below 0.15 units and only b3, a3 is above 0.10 units. (this is barely above the sensitivity of the method)

MDI Mechanical Design

Francesco Fransesini

MDI Alignment

Alignment required for the final focusing quadrupoles, BPMs, Screening and Compensation solenoids and Lumical (for now ...)

Evaluation of the existing concepts Considering internal + external monitoring system

FUTURE CIRCULAR COLLIDER

Impedance

Thursday from 11h00 – FCC-ee & FCCIS WP2: impedance & collective effects – Ursula van Rienen / UROS

Introduction and overview, incl. FEB	Mauro Migliorati , Sapienza
Impedance database and single- bunch instability thresholds	Emanuela Carideo, Sapienza & CERN
Status of bellows and flanges impedance studies	Chiara Antuono, Sapienza
Combined effect of impedance and beam-beam	Yuan Zhang, IHEP
SuperKEKB collimation	Takuya Ishibashi, KEK

Impedance overview

<mark>Mauro Migliorati</mark>

FUTURE CIRCULAR COLLIDER

longitudinal wake potentials

FUTURE CIR<u>CULAR</u>

COLLIDER

bunch lengthening & microwave inst.

TMCI threshold

Re (Q_x) vs N_b , from PyHEADTAIL for combined effect of transverse & longitudinal resistive wall wakefield

Bellows and flanges

CIRCULAR Combined effect of impedance and beam-beam Yuan Zhang

- The beam coupling impedance can have a substantial impact on the choice of beam parameters and the final collider performance.
- The principal effects are summarized:
 - Tune shift of stable tune areas
 - Smaller safe tune area
 - Smaller beam blowup
- Possible Mitigation Options:
 - Smaller β_x^*
 - Higher Harmonic Cavity (energy calibration?)
 - Higher Momentum compaction
- The effect for 4IP scheme is evaluated roughly
- it is expected that longitudinal impedance will certainly increase. The combined effect of impedance and beam-beam needs particular care since it may cause unwanted instabilities.

SuperKEKB Collimation

Horizontal direction

Vertical direction

Summary

- The SuperKEKB type collimators have been working well up to the beam current of approximately 1 A.
- · These collimators have been indispensable for Belle II and SuperKEKB.
- We developed and installed carbon jaws to protect collimators for the BG suppression.

- Phase matching between D02V1 collimator and QC1RP in LER as much as possible by moving the collimator.
- A simulation indicates that this configuration can reduce the detector background about 40%.
- Non-linear collimator (NLC) in LER by adding new skew sexts at OHO.

Thursday from 14h00 – FCC-ee: Other applications & upgrades - M. Seidel/PSI			
FCC-ee booster as ultimate storage ring photon source	Sara Casalbuoni, XFEL		
Science case for high-energy photons	Anders Madsen, XFEL		
FCC-ee e ⁺ options	Benjamin Rienacker, Ruggero Caravita, CERN		
ERL-based e+e- collider	Vladimir Litvinenko, BNL		
FCC-ee upgrade to muon collider	Daniel Schulte, CERN		

FCC-ee booster as photon source

FUTURE CIRCULAR

COLLIDER

Science case for high energy photons

<mark>Anders Madsen</mark>

A number of imaging techniques could be interesting in the 30-100 keV range At these energies radiation not diffraction-limited at conventional DLSR

High pressure by Diamond Anvil Cell (DAC)

FUTURE CIRCULAR COLLIDER

> State-of-the-art X-ray holography (cone beam) requires smallest focus (diffraction limited beam)

Hagemann et al. (2021)

- X-ray Photon Correlation Spectroscopy (XPCS)
- Illumination with a coherent beam leads to fine structure ("speckle") in the scattering image
- The speckle dynamics encodes
 the sample dynamics

Stephenson et al. (2009)

Photon-matter interactions (for Cu)

Schroer et al. (2018)

Cross section (barns/atom)

Low energy positron/positronium physics at one glance

Precision QED studies (annihilation lifetime, Ps spectroscopy) Fundamental symmetry tests (CPT, WEP, invisible decays) Material studies (defect studies)

Key development: focus on reaching c.m. energy range of 500 - 600 GeV

Physics: Investigating details of:

- The ERL-based high-energy e⁺e⁻ collider promises significantly higher luminosities at CM energies above 140 GeV while consuming a fraction ~ 30% of electric power required in a corresponding SR e⁺e⁻ collider design
- The CM energy reach is extended to 500-600 GeV for double-Higgs and $t\underline{t}H$ production

Muon collider

Daniel Schulte

UON Collider

Objective:

In time for the next European Strategy for Particle Physics Update, the study aims to establish whether the investment into a full CDR and a demonstrator is scientifically justified.

It will provide a baseline concept, well-supported performance expectations and assess the associated key risks as well as cost and power consumption drivers. It will also identify an R&D path to demonstrate the feasibility of the collider.

Scope:

Focus on two energy ranges: •

FUTURE

CIRCULAR

COLLIDER

- **3 TeV**, if possible with technology ready for construction in 15-20 years
- 10+ TeV, with more advanced technology, the reason to do muon colliders
- Explore synergy with other options (neutrino/higgs factory) ٠
- Define R&D path

The End

Congratulations to everyone for fantastic progress!