

INTEGRATION OF FCC-EE/HH

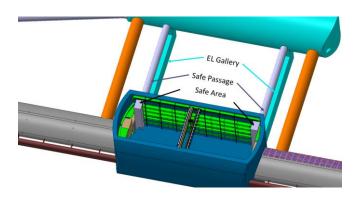
Released work

FCC

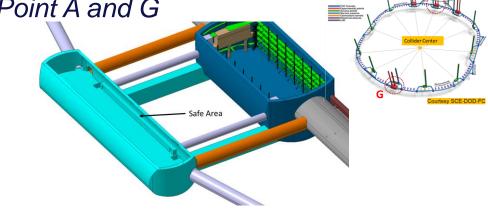
- Integration of FCC-ee machine elements at Point A and G
 - FCC-ee/hh Underground Structure
 - FCC-ee/hh enlargement
 - FCC-ee/hh Experiment Cavern
 - FCC-ee/hh Service Cavern
 - FCC-ee/hh Connection Tunnel
 - FCC-ee/hh Transport Tunnel
 - FCC-ee Machine Tunnel Section 1 at Tunnel A
- FCC-ee/hh Underground Structure and Surface at Point B
- FCC-ee/hh Underground Structure at Point C
- Integration of FCC-ee machine elements in SSS (Short Straight Section) Point A, B, G and L
 - FCC-ee main ring machine elements
 - FCC-ee booster ring machine elements
- Integration of FCC-ee RF machine elements at Point D and J
 - FCC-ee RF machine elements (H)
 - FCC-ee RF cross section (ttbar2)

What's next

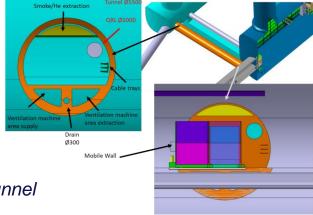
- Integration FCC-ee Underground Structure at Point A and G
- Integration of FCC-ee machine elements at Point A
- Integration of FCC-ee machine elements in SSS (Short Straight Section) Point A, B, G and L
- Integration FCC-ee Underground Structure at Point D
- Integration of FCC-ee RF machine elements at Point D
- FCC-ee extraction areas
- FCC-ee injection areas
- Outlines of surface sites (Experiment and Technical surface sites), determine the size of buildings for the needs of services.


RELEASED WORK

Remind: All studies take into account both requirements from ee AND hh Colliders

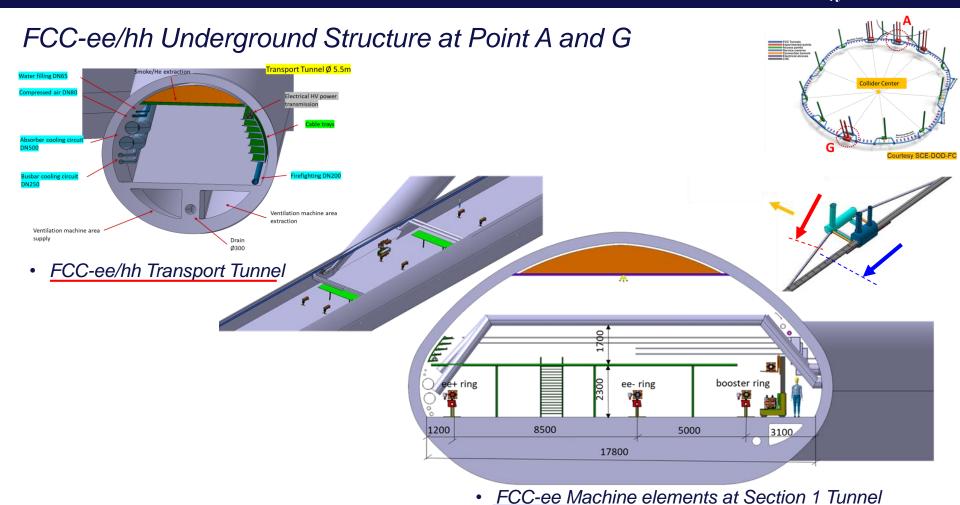


FCC-ee/hh Underground Structure at Point A and G

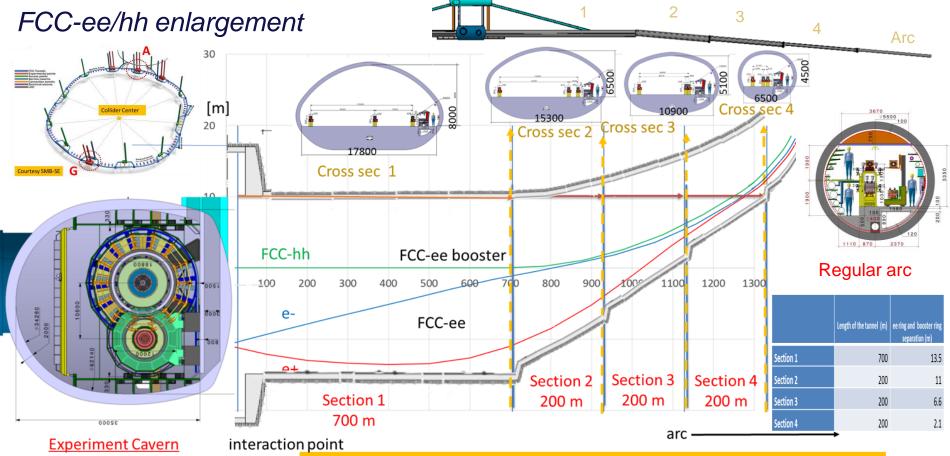


FCC

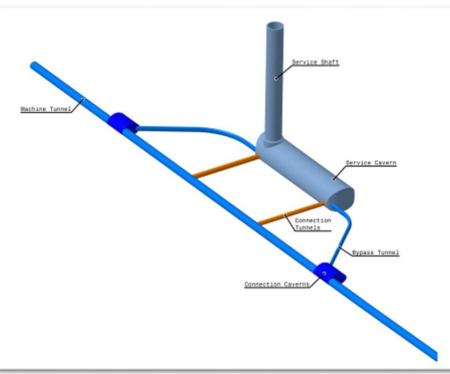
FCC-ee/hh Experiment Cavern

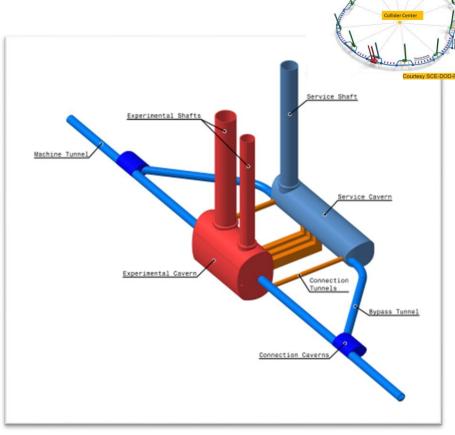


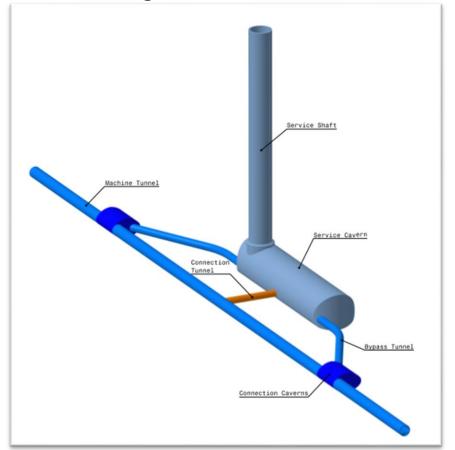
FCC-ee/hh Services Cavern

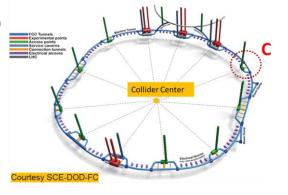


FCC-ee/hh Connection Tunnel





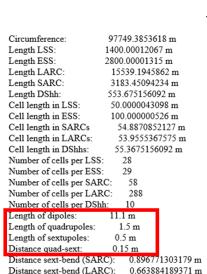

FCC-ee Underground Structure at Point B



FCC-hh Underground Structure at Point B

FCC-ee/hh Underground Structure at Point C (E,F,H,I,K)

Standard Access point Configuration


Collider Center

Integration of FCC-ee machine elements in SSS (Short Straight Section) Point A, B, G and L

FCC-ee main ring

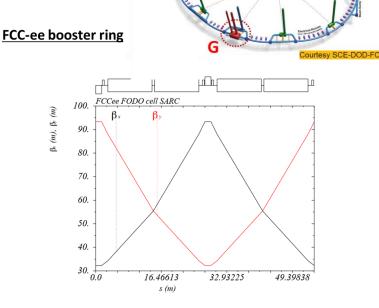

D: dipole, Q:	quadrupole, S	: sextupole	
Spacing Betw	reen Magnets	(m)	
D-Q	0.3	(A) D	Q D
Q-S	0.3	(B) D	Q S D
S-S	0.1	(B) D	3 0
S-D	0.3	(C) D	Q S S D
Case	Arrange	Numbers	Length of D (m)
(A)	Dx-Q-Dx	492	24.432
(B)	Dx-Q-S-Dx	1256	22.732
(C)	Dx-Q-S-S-Dx	1152	21.232
Length (m)			
Q	2.9	twin aperture	
S	1.4	single aperture	

Table provided by Katsunobu Oide on 24.7.2018

 $0.65 \, m$

Distance bend-bend:

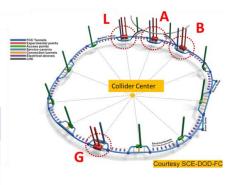
Integration of FCC-ee machine elements in SSS

Main ring magnet information (if half-cell length reserved for a single – long – dipole is distributed over 3 – shorter – dipoles):

Case A:

Magnet	Length	Weight	Number of magnets
Dipole	7.94	~2000	8700
Quadrupole	2.9	~4500	3480

Case B:

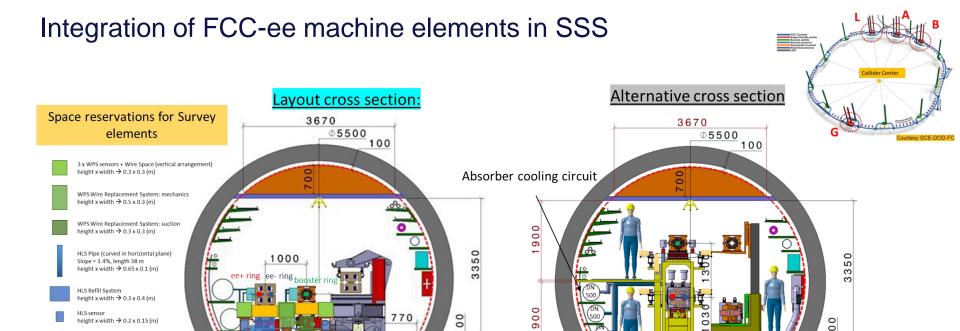

Magnet	Length	Weight	Number of magnets
Dipole	7.37	~1840	8700
Quadrupole	2.9	~4500	3480
Sextupole	1.4		832

Case C:

Magnet	Length	Weight	Number of magnets
Dipole	7.21	~1800	8700
Quadrupole	2.9	~4500	3480
Sextupole	1.4		2336

Booster magnet information (if half-cell length reserved for 2 dipoles is distributed over 3 dipoles):

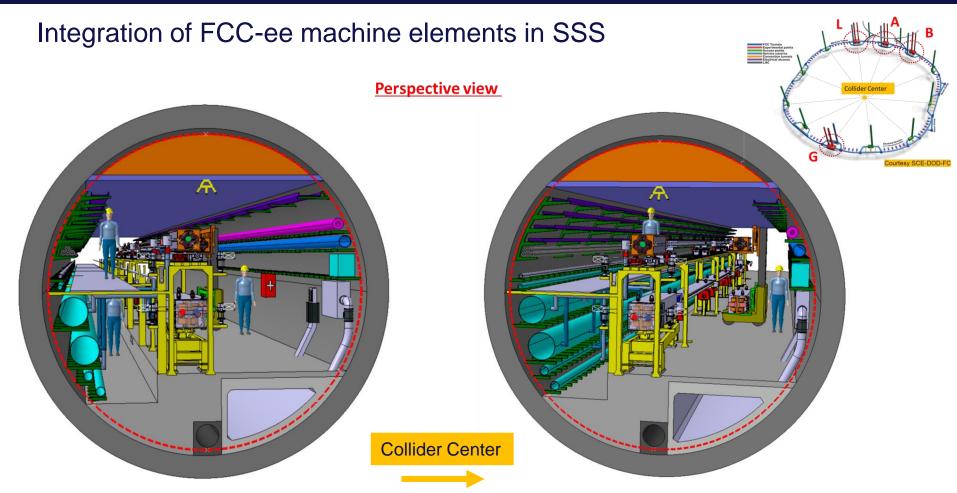
Magnet	Length/m	Weight	Number of magnets
Dipole	7.4		9020
Quadrupole	1.5		3540
Sextupole	0.5		1568


Metallic structure:

Profile	Dimension in	kN	Weight
	mm	m	kg/m
	120x60x6	625	15.6

Element Girder

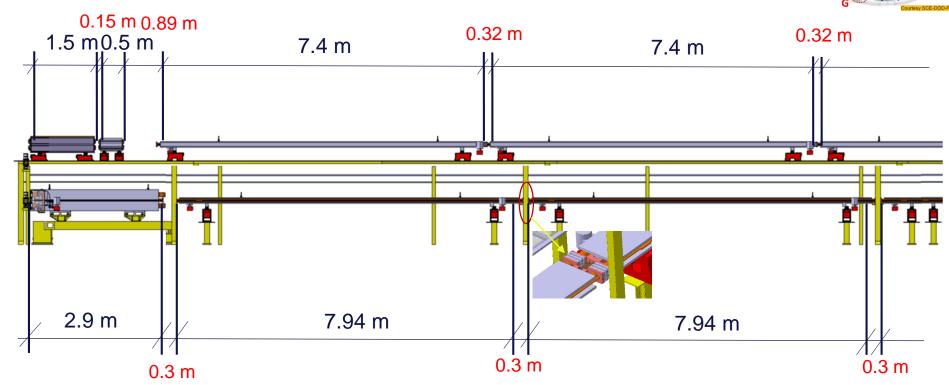
Survey Equipment Support



Collider Center

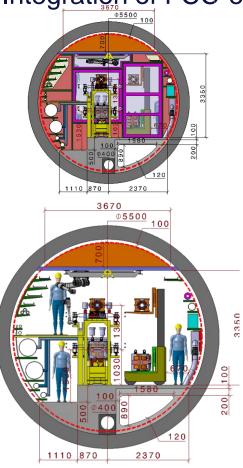
Busbar cooling circuit

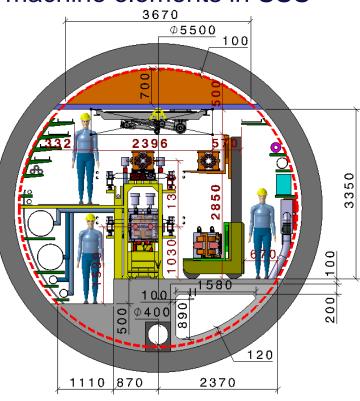
Alignment space reservation

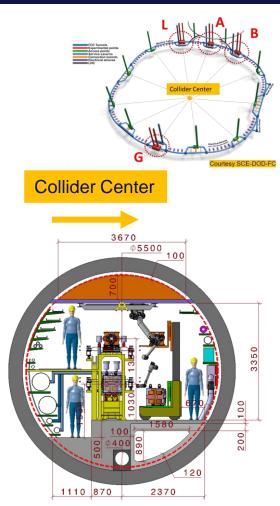


Integration of FCC-ee machine elements in SSS

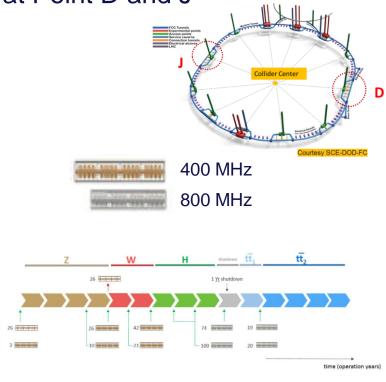
"Case A": main ring SSS without sextupole; followed by 24.432 m for dipole(s)

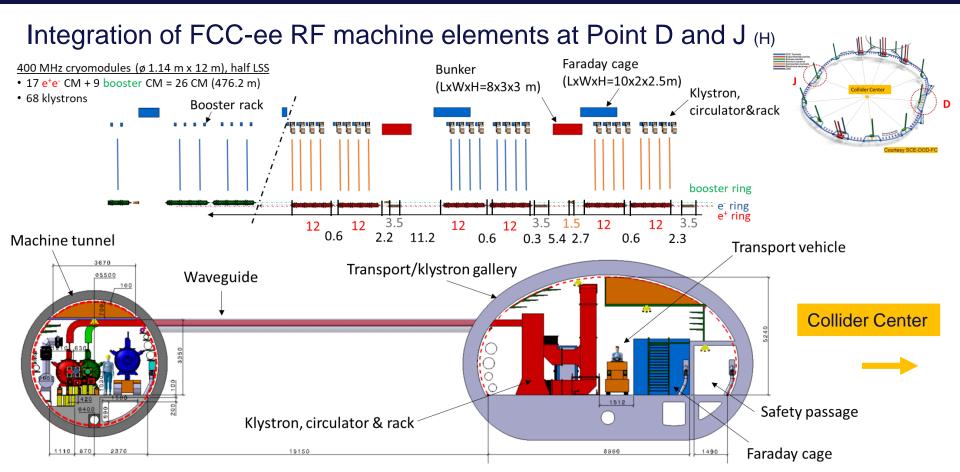






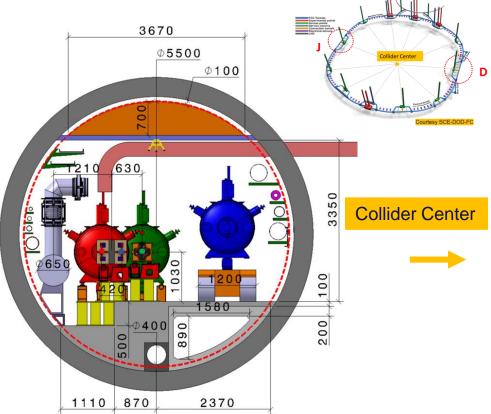
Integration of FCC-ee machine elements in SSS


Robot positions in the tunnel


Integration of FCC-ee RF machine elements at Point D and J

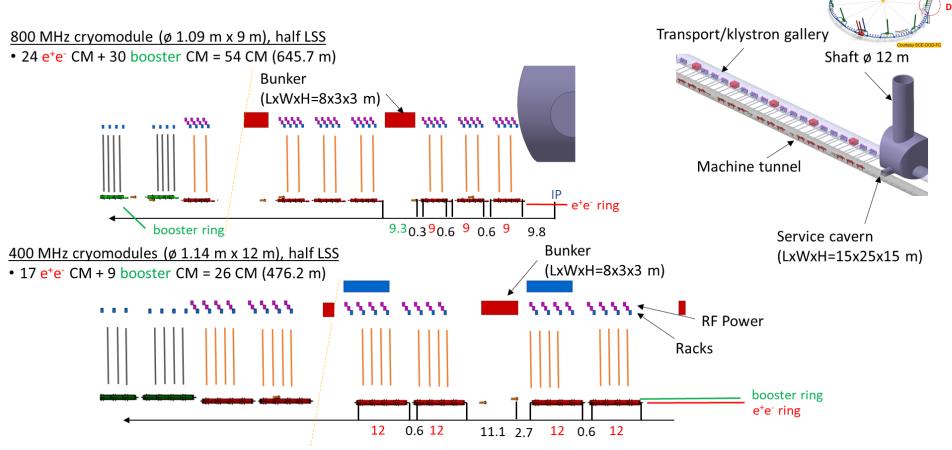
	2		WW	I	Z	Н	tt	1	tt	2
	per	booster	per	boo-	per	booster	2	booster	2	booste
	beam	booster	beam	ster	beam	booster	beams		beams	
Total RF voltage [MV]	100	140	750	750	2000	2000	9500	9500	10930	10 93
Frequency (MHz)					4	100				
RF voltage [MV]	100	140	750	750	2000	2000	4000	2000	4000	2000
$E_{\rm acc}~({ m MV/m})$	5.1	8	9.6	9.6	9.8	9.8	10	0	1	0
# cell / cav	1	4	4		4	į.	4	Į.	4	
V _{cavity} (MV)	1.92	12	14.4	14.4	14.7	14.7	1	5	1	5
# cavities	52	12	52	52	136	136	272	136	272	136
# CM	13	3	13	13	34	34	68	34	68	34
T operation (K)	4.	5	4.5		4.	5	4.	5	4.	5
Dyn losses/cav (W)	14	11	210	26	202	29	210	30	210	30
Stat losses/cav (W)	8		8		8	3	8		8	
$Q_{ m ext}$	4.4×10^{4}		6.6×10^{5}		1.9×10^{6}		4×10^{6}		4.7×10^{6}	
P _{cav} (kW)	962		962		368		175		149	
Frequency (MHz)					8	300				_
RF voltage (MV)							5500	7500	6930	8930
E _{acc} (MV/m)							19.8	20	19.8	19.8
# cell/cav							5	5	5	5
V _{cavity} (MV)							18.6	18.75	18.6	18.6
# cavities							296	400	372	480
# CM							74	100	93	120
T operation (K)							2		2	
Dyn losses/cav (W)							66	10	66	10
Stat losses/cav (W)					8		8	}		
$Q_{ m ext}$					3.9×10^{6}		5.6×10^{6}			
P _{cav} (kW)							176		155	

Integration of FCC-ee RF machine elements at Point D and J (H)

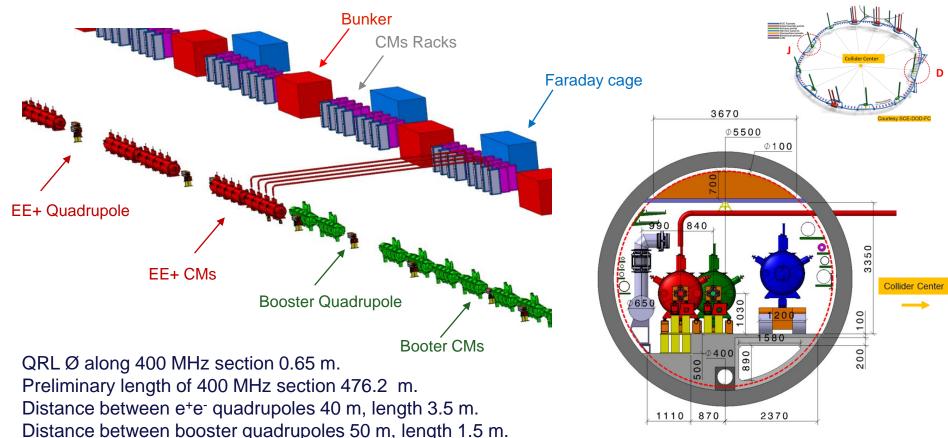

QRL Ø along 400 MHz section 0.65 m.

FCC

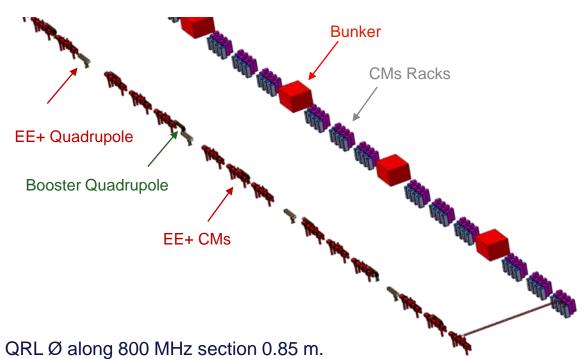
Preliminary length of half LSS 400 MHz 476.2 m (H machine) (nota: inner 2 x 645.7 m left empty for later ttbar installation)


Distance between e⁺e⁻ quadrupoles 40 m, length 3.5 m.

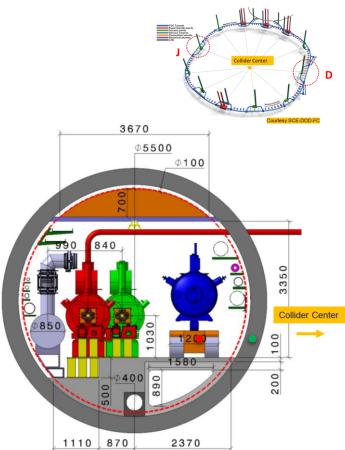
Distance between booster quadrupoles 50 m, length 1.5 m.



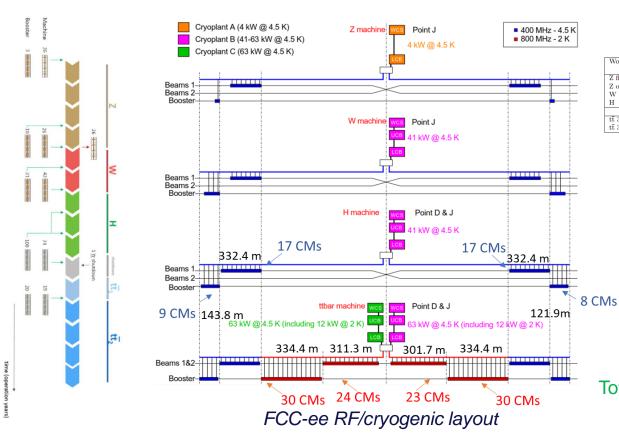
Integration of FCC-ee RF machine elements at Point D and J (ttbar2)



Integration of FCC-ee RF machine elements at Point D and J (ttbar2, 400 MHz)


Integration of FCC-ee RF machine elements at Point D and J (ttbar2, 800 MHz)

Preliminary length of 800 MHz section 645.7 m.


Distance between e⁺e⁻ quadrupoles 40 m, length 3.5 m.

Distance between booster quadrupoles 50 m, length 1.5 m.

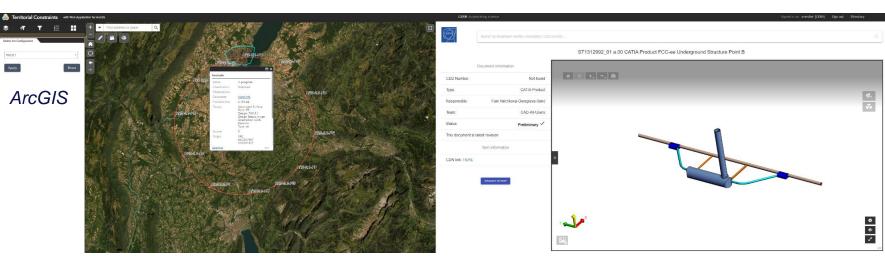
Integration of FCC-ee RF machine elements at Point D and J

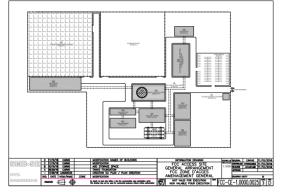
Courtesy L. Tavian

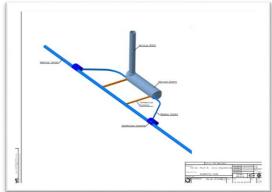
Working point	Luminosity	Tot. lum./year	Goal	Run time
	$(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	$(ab^{-1})/year$	(ab^{-1})	(years)
Z first two years	100	24	150	4
Z other years	200	48		
W	25	6	10	1-2
H	7.0	1.7	5	3
	RF reconfiguratio	n		1
tt 350 GeV (first year)	0.8	0.20	0.2	1
$t\overline{t}$ 365 GeV	1.4	0.34	1.5	4

Peak luminosity per IP, total luminosity per year (two IPs), luminosity target, and run time for each FCC-ee working point.

Shutdown	No. cryomodules	Length of shutdown
Shutdown 1	-	12 weeks
Shutdown 2	_	12 weeks
Shutdown 3	$10\mathrm{CM}$	12 weeks
Shutdown 4	$26\mathrm{CM}$	20 weeks
Shutdown 5	$21\mathrm{CM}$	14 weeks
Shutdown 6	$42\mathrm{CM}$	18 weeks
Shutdown 7	$30\mathrm{CM}$	15 weeks
Shutdown 8	$30\mathrm{CM}$	15 weeks
Long shutdown	$104\mathrm{CM}$	1 year
Shutdown 11	39 CM	17 weeks
Shutdown 12	_	-
Shutdown 13	_	_
Shutdown 14	_	_


Minimum lengths of FCC-ee extended shutdowns based on the number of cryomodules (CMs) to be installed and a special 12 week margin for the first three years; shutdown no. 1 refers to the first shutdown after one year running on the Z pole.


Total length without kickers: 2212.3 m



FCC ArcGIS database

Main topics and milestones for Integration activities

Feasibility Design Report

2021

FCC

2022

2023

2024

2025

2026

Collection, review and update of EL, CV, GC,, HE, BE, SY,TE and HSE user requirements for FCC-ee/hh for each surface and underground points

Refined concept integration design of FCC-ee with bear in mind for later evolution to FCC-hh

(Pre-) technical design of FCC-ee surface and underground infrastructure with inputs from EL, CV, GC,, HE, BE, SY,TE and HSE and other systems

input for the Feasibility Design Report

Thank you for your attention.