

The FCC-eh Detector

A. Polini (INFN Bologna)
on behalf of the LHeC Study Group
30th June 2021

Outline:

- Introduction
 - Physics Requirements
 - Accelerator and
 - Interaction Region
- Detector and its subcomponents
- Future and Outlook

The LHeC and FCC-eh accelerators

- Electrons from dedicated Energy Recovery Linac (ERL)
- Hadrons from LHC/FCC rings

50 GeV(e) \times 7 TeV (p) 2.76 TeV/nucl. (A)

- $\sqrt{s} = 1.18 (p) \text{ or } = 0.74 (A) \text{ TeV}$
- $10^{33} 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- Electrons via 3-track ERL
 ~1/4 of LHC circumference

60 GeV(e)
$$\times$$
 20 – 50 TeV (p)
7.9 – 19.7 TeV/nucl. (A)

- $\sqrt{s} = 2.2 3.5 (p) \text{ or } 1.4 2.2 (A) \text{ TeV}$
- $10^{34} \text{ cm}^{-2} \text{s}^{-1}$

LHeC FCC-eh Context

Latest and most promising idea to take lepton-hadron physics to the TeV centre-of-mass scale ... at high luminosity

Lepton—Proton Scattering Facilities

Designed to exploit intense hadron beams in the high luminosity phase of LHC running from mid 2020s

Processes & Challenges at LHeC/FCC-eh

• Neutral current (NC) $ep \rightarrow eX$

- Scattered electron (e)towards small angle (< 179°) to access low- Q^2 events
- Hadron (X)
 forward-going jets
 from high-x events
 AND from QCD radiation
- Flavour tagging for decomposing parton-density functions

• Charged current (CC) $ep \rightarrow \nu X$

missing p_T : need hermetic detector*
 small beam holes (<1°)
 + good calorimeter energy resolution

A NC (leptoquark) event at LHeC

Forward

q/g jet(s)

p/A

Scattered e

^{*} also important for cross-calibration

Processes & Challenges at LHeC/FCC-eh

Higgs couplings

- Thru WW fusion in CC: forward "VBF jet"
- Precise coupling to $b\overline{b}$, $c\overline{c}$, and $\tau\tau$:
 - Flavour tagging in forward direction
 - Jet resolution for mass reconstruction
- EW and top physics
- QCD studies (soft and hard)
 - Also photoproduction $\gamma p \rightarrow X$
- BSM physics

Detector Milestones and References

- LHeC CDR 2012:
 - LHeC Study Group, 2012 J. Phys. G: Nucl. Part. Phys. 39 075001
 - 630 Pages, detailed detector studies and baseline designs
- FCC-eh detector in FCC CDR vol. 3
 - EPJ Special Topics 228, 755–1107(2019)
- CDR update in 2020:
 - https://arxiv.org/abs/2007.14491
 - Accelerator design optimisation: ERL 60 → 50 GeV, higher luminosity, etc.
 - Physics (e.g. Higgs) updates, technology advancement + variations
 - Low-E FCC-eh detector design also presented
- Offshell-2021 Conference:
 - 06-09 July + paper to EPJ-C

The LHeC Detector

Asymmetric detector design: higher energy flow in the forward direction; 7TeV p vs 50-60 GeV e

LHeC Offshell-2021 Version

- Based on LHC experience and HL-LHC upgrade,
- Main Differences:
 - No pile-up (max 0.1) + much less radiation (O(1/1000))
 - Technology developed for elsewhere (e.g. ILC, etc.) may also be applicable
- Aims for compact, modular but very hermetic detector. Coverage from 1 to 179 degrees

- Main Components:
 - High acceptance Silicon Tracking System
 - Detector and Steering Magnets
 - Liquid Argon Electromagnetic Calorimeter*
 - Iron-Scintillator Hadronic Calorimeter
 - Forward Backward Calorimeters: Si/W Si/Cu...
 - Muon System, Forward (p/n) /Bwd Taggers (e/γ)
 - * more options also considered

Detector design for FCC-eh

TheFCC-eh detector

similar size as CMS

- Proton 20 and 50 TeV, electron 60 GeV
- Design for LHeC with extended volume / layers will serve also for FCC-eh
 - Forward/Central: scales in $\sim \log E_{had}$ for calo
 - Backward 50 or 60 GeV: similar to LHeC

Total length $13 \rightarrow 20 \text{ m}$ Radius $4.8 \rightarrow 6.8 \text{m}$

Central tracker also with (tilted) wheels

Fwd tracker $4 \rightarrow 8$ disks Bwd $2 \rightarrow 6$ disks

HadCal:

12-15 interaction lengths

Interaction Region and B Field

- Dipole magnet integrated in the detector to bend electron beam
 - Beam-2 p and e brought in head-on collisions
 - Beam-1 traversing unaffected

- Updated Field values:
 - 3 Tesla (solenoid); 0.15 Tesla (dipole)

New re-designed, optimised LHeC IR in CDR 2020

New FCC-eh IP (offshell paper)

Same Vertex for ep/eA or hh

Central Tracker & Beam Pipe

- Det. technology advanced since 2012 CDR
- Option: Low-material tracker by DMAPS
 - CMOS sensors (HV-CMOS for this update) Readout electronics integrated
- Very thin: 0.1mm for pixel, 0.2mm for strips
 - Small material budget for forward/backward
- Rad hard up to 2 \times 10¹⁵ 1MeV $n_{eq}/{\rm cm}^2$ (cf. HL-LHC fluence \gtrsim 10¹⁶)
- 5-8 layers for $-3.5 < \eta < 4$ \geq 2 hits for $-4.2 < \eta < 5$

Pitch (μm)	rφ	Z
pixel	25	50
macro pixel	100	400
strip	100	10-50 mm

Circular/elliptical thin beam pipe to accommodate the outgoing synchrotron radiation fan:

- Specs & Studies from LHeC CDR: Beryllium 2.5-3 mm thickness
- Circular(x)=2.2cm; Elliptical(-x)=-10., y=2.2cm

Silicon Tracker

Very preliminary design:

strip rings

pixel rings

macro-pixel ring

- FCC-eh tracker: extend LHeC silicon tracker towards larger η
- The chosen technology would allow for precise and redundant track measurements
- Overall length 9.2 m, Radius 84 cm
- 11 Forward wheels, 9 backwards

Number of modules with at least one hit

4 strip layers

4 macro-pixel layers

1 pixel layer

1 pixel circ.-elliptical-layer

Silicon Tracker Performance

- Recent technologies allow for lightweight design:
- At large η dead material from beampipe and low B field
- Possible further improvements:
 - Thinner backward beam pipe in diameter (SR fan thinner there)
 - OR: Si tracker in second order vacuum to be evaluated

Calorimetry

- High-performance barrel calorimeter
 - Baseline: Liquid Argon EMC, accordion structure (ATLAS like)
 - inside the solenoid with shared cryostat
 - "warm" option:
 - Sci-Pb: no need for cryostat → modular
 - Comparable performance: LAr still advantageous for resolution, segmentation, radiation stability
- Fine-segmented plugs with compact shower (allow for particle flow)
 - technology developed for ILC

Baseline configuration		η coverage	angular coverage
EM barrel	LAr	$-2.3 < \eta < 2.8$	6.6° – 168.9°
Had barrel+Ecap	Sci-Fe	(~ behind EM barrel)	
EM+Had forward	Si-W	$2.8 < \eta < 5.5$	0.48° –
EM+Had backward	Si-Pb	$-2.3 < \eta < -4.8$	-179.1°

Calorimeter extension for FCC-eh

- Solenoid and dipole outside barrel EM calorimeter similarly as LHeC
- Endcap plugs should be thicker by order of a few Λ_I for 7 → 20 → 50 TeV steps
 - 9.6 →12.7 Λ_I (forward endcap) for 7 → 20 TeV
 - More details in 2020 CDR
- Challenging: shower separation in very forward rapidity regions
- HCAL Barrel region: standard design Iron-Scintillator tiles providing also return flux for Solenoid field

ALICE FoCal pixel ALPIDE (MAPS) test beam data (from FoCAL TDR CERN-LHCC-2020-009)

CMS HGCAL 6-inch module cell size 1.18/0.52 cm² (from TDR)

Fig. 54: Different projections of a single-event measurement (hit pixels) of two electrons of $E = 5.4 \,\text{GeV}$ from a test beam in the pixel prototype. The left panel shows the transverse distribution summing longitudinally over all layers, the right panel shows a side view of the same event. The hits that are within 15 mm of either of the two shower centers are colored in blue and red; the black points indicate hits that are further from the shower center.

Muon System

Muons: Higgs, HFL, LFv etc. (tag/trigger/tracking)

- Baseline: no dedicated magnetic field (solenoid return thru iron only)
 - Momentum by central tracker
 - Good tagging + fast trigger
 - 2 Stations, each with 3 layers
- HL-LHC technology serves for that
 - Very thin RPC (1mm gas gap) for higher rate capability and timing (<1ns)
 - sMDT: $\phi = 1.5$ cm drift tubes for precise position measurement
- Possible extensions:
 - Dedicated forward toroid or outer solenoid

Some Specifications:

- Total area ~ 400 m²
- Single unit detect: 2-5 m²
- Max.rate: 3 kHz/cm²

- Rad. Hard.: 0.3 C/cm²
- Time res.: ~0.4 ns
- Spatial res.: 1mm (RPC); 80 µm (MDT single tube)

LHeC Adaption from ATLAS Phase-I RPC-MDT assembly

sMDT Multilayer 2 sMDT Multilayer 1

thin-RPC Triplet

Magnets options/extensions:

- Use twin solenoid option as proposed for other experiments.
- Field in the fwd/bwd region to allow for tracking would required a dipole field at small angle or a toroidal solution
- To be investigated.

Around zero-degrees

Forward Proton spectrometer

 following the LHC design apart from stations close to IF

- New IP design allows to place a ZDC
 - Transverse size ± 30 cm shower leak moderate
 - Aperture ~ 0.35 mrad
 or 2.4 GeV in p_T
- Technology candidate: Si-W
 - Need < 1mm resolution for p_T resolution \ll 100 MeV for 7 TeV neutron i.e. very fine segmentation (e.g. ALICE FoCal)
 - Radiation dose: O(10MGy) or more
 - Much less than LHC, possibility to use silicon sensors

Considerations for FCC-eh Forward Detectors

We believe there should be some locations to have good acceptance for forward proton spectroscopy FCC-he

- Neutrons with 3x or 7x boost w.r.t. LHeC
 - Radiation almost proportionally more
 - Need \ll 1mm resolution for p_T resolution below 100 MeV: this requires very detailed shower profile measurement: need R&D
- Still aperture may be enough
 - similar IP layout as LHeC
 - may be good enough to measure heavy ion breakup
 - may have good enough energy flow measurement
- pp IP similar to LHC and tight, ZDC there may again be too small Data should definitely be useful for understanding e.g. Ultra High Energy Cosmic Ray shower
- Design will follow the accelerator machine layout development
- Similar discussion for backward taggers (e/γ) and their use for luminosity measurements. Detailed studies were available for LHeC in CDR-2012

Conclusions

- The LHeC and the FCC-he offer a vast, unique and complementary physics program (QCD, EW, Higgs, top, BSM) to the LHC and beyond.
- The main elements of detector design for LHeC and FCC-eh have been presented and indicate that the LHeC detector with a limited set of extensions should satisfy the performance goals for FCC-eh
- The possibility of hh collisions in the same IP opens up for unprecedented cross calibration possibilities and measurements in hh, AA program.
- To bring the detector design to the next level a detailed description of the FCC interaction region and its machine interface will be needed

Conclusions

- The LHeC and the FCC-he offer a vast, unique and complementary physics program (QCD, EW, Higgs, top, BSM) to the LHC and beyond.
- The main elements of detector design for LHeC and FCC-eh have been presented and indicate that the LHeC detector with a limited set of extensions should satisfy the performance goals for FCC-eh
- The possibility of hh collisions in the same IP opens up for unprecedented cross calibration possibilities and measurements in hh, AA program.
- To bring the detector design to the next level a detailed description of the FCC interaction region and its machine interface will be needed

Thank You!