EXPERIENCE WITH THE VACUUM SYSTEM IN SuperKEKB

Contents

• Vacuum system in SuperKEKB
 • New components, with some points to note
• Results and problems so far
 • Status of components, Electron cloud effect, Pressure bursts, etc.

Y. Suetsugu
Accelerator Laboratory, KEK
SuperKEKB

- An electron – positron collider with asymmetric energies.
- Located at KEK Tsukuba campus
- Upgrade project of KEKB B-factory, which had been successfully in operation during 1998~2010.
- Mission: Quest new theories beyond the standard model at B-meson regime.
Configuration

- **Main ring (MR)**
 - Circumference ~ 3016 m
 - 7 GeV Electron ring (HER)
 - 4 GeV Positron ring (LER)

- **Positron damping ring (DR)**
 - Circumference ~ 136 m
 - Energy 1.1 GeV

- **Injector (Linac)**
 - Length ~ 700 m
 - Generate electron and positron
 - Accelerate up to final energy

- **Belle II Detector**
 - Collision point
Project timeline

- 2010～2016 Construction (Upgrade from KEKB)
- 2016/2～6 Phase-1: Test operation (Beam tuning)
- 2018/3～7 Phase-2: Commissioning operation (Collision tuning)
 (Installation of final focusing SC magnets and Belle II Detector)
- 2019/3～ Phase-3: Physics operation
The vacuum system was a key upgrade point.

LER: Approximately 93% of beam pipes and bellows chambers in length were renewed.

HER: Approximately 82% were reused.

Sub systems, such as cooling water system, compressed air system, were basically reutilized, with necessary upgrades.

Control system is also reused, but the antique components were updated.
Requirements to vacuum system

• **Ultra-high vacuum** to ensure long beam lifetime, keep small beam emittance, reduce background noise to detector, and avoid ion instability (HER)
 • Target pressure: \(\sim 10^{-7} \) Pa with beams

• **High tolerance against high current beams** for stable operation
 • New RF shields for bellows chambers and gate valves

• **Suppression of electron cloud effect (ECE)** to avoid emittance growth and beam size blow up in LER
 • Beam pipe with antechamber, solenoid field, coating of TiN film, clearing electrodes, groove structure, and external magnetic field

• **Low beam impedance** to keep small beam emittance and short bunch length, and to avoid beam instabilities
 • Beam pipe with antechamber, step-less connection flange, new collimators with low impedance

• **Reliable and stable system**
 • Large scale vacuum system: Several thousands control points.
 • Cost performance
Main components

- New beam pipes with antechambers.
 - Realize low beam impedance by putting SR masks and pump ports in antechambers
 - Effective to reduce photo electron effect
 - LER arcs: Aluminum alloy (A6063)
 - HER and Wigglers: OFC (C1011)

- New bellows chambers and gate valves with comb-type RF shield
 - High thermal strength
 - Applicable to cross sections with antechambers
Main components -2

- Step-less connection flange: MO-type flanges
 - Little step inside and low beam impedance
 - Adaptable to various types of cross sections
 - Various types of copper (C18200) and aluminum-alloy (A2219) flanges were developed.

- Beam collimator
 - Key component to suppress beam background of Belle II.
 - New type collimators, which have low impedances and fit antechamber scheme, were developed.
Main components -3

• Main pump: Three layers of NEG strips ST707 (arc)
 • Installed into an antechamber: provide effective pumping system
 • Activation by micro-heaters (sheath heaters) inserted between strips
 • Screens between pump and beam
 • Average pumping speed of 0.14 m3s$^{-1}$m$^{-1}$ for CO

• Auxiliary pump: Sputter ion pumps
 • Almost every 10 m, RF shield on the port
 • Official pumping speed of 0.4 m3s$^{-1}$
Countermeasures against electron cloud effect (ECE)

ECE: A critical issue for the SuperKEKB positron ring (LER)

Based on various R&D results in KEKB and other institutes, various countermeasures were prepared.

Expected average e^- density $\sim 2\times10^{10}$ e^- m$^{-3}$

Less than the threshold estimated by simulations
Points to note -1

- Beam pipes with antechambers
 - Welding lines (Tig welding) of aluminum beam pipes cracked just after starting evacuation in the tunnel (3 pieces).
 - Structural simulation indicated a high stress at top and bottom of the beam channel due to
 - Atmospheric pressure
 - Weight of bellows chamber at end, if not supported.
 - Be careful with non-circular beam pipes.

- Bellows chambers with com-type shield
 - Heavy (especially for Cu bellows chambers)
 - Robust support for each bellows chamber.
 - Small transvers/longitudinal tolerance
 - Careful alignment of components adjacent to the bellows chamber.
• **MO-type flange**
 • Need careful bolt tightening
 • Uniform bot tightening is important.
 • A manual was prepared for workers.
 • Weak against scratches on sealing surface
 • Polishing is available using “Scotch-bright”.
 • Air leaks were detected when the connection between Al and Cu (or SS) flanges were baked up to 150°C.
 • Regardless of gasket materials (Cu or Al)
 • Big difference of thermal expansion rates between these flanges should be a cause.
 • Use Cu-Al transition bellows chamber to connect Cu and Al beam pipe.
Present operation status

- Phase-3 operation (Physics run)
 - Physics Operation is continuing steadily.
 - No break due to COVID-19!

- Recent beam currents:
 - HER ~700 mA
 - LER ~ 800 mA
 - 1174 bunches

- β_y^* (ver. Beta function at IP) = 1 mm (Min. 0.8 mm)

- Max. luminosity = $3.12 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

- Total integrated luminosity (recorded) ~ 200 fb$^{-1}$

- We are now exploring uncharted territory!
Vacuum scrubbing

- Vacuum scrubbing (dP/dI vs beam dose, η vs photon dose)
 - LER: η decreased to less than 1×10^{-6} molecules photon$^{-1}$, at a photon dose of 2.5×10^{25} photons m$^{-1}$, here the pumping speed of 0.06 m3s$^{-1}$m$^{-1}$ is assumed.
 - HER: η is lower than that in LER. For arc section, where the beam pipes was reused, η decreased to less than 1×10^{-7} molecules photon$^{-1}$, at a photon dose of 3.7×10^{25} photons m$^{-1}$. → Memory effect
• Status of new vacuum components
 • Confirming the stability of the new vacuum components was a major subject for the Phase-1 beam commissioning.
 • No extra heating or abnormal pressure rise in these components was observed.
 • The temperature rises in the bellows chambers, gate valves and flanges are 2~4 °C at 1010 mA, for example.

![Temperatures of new components](chart.png)
Air leak from MO-type flange

- We experienced air leak two times in wiggler sections, where the beam snakes and the intense synchrotron radiation (SR) is emitted horizontally.
 - **Case 1:** SR hit the antechamber part of the flange due to vertical COD.
 - The vertical COD at upstream side was corrected to be flat as much as possible.
 - **Case 2:** A cooling-water pump has broken suddenly during beam operation, and the flange was locally heated up rapidly.
 - The temperature of beam pipe rapidly rose over 100°C.
 - The temperature of flanges at antechamber part should be more.
 - Local heating should be avoided.
Electron cloud effect

• Non-linear behavior of pressure against beam current due to ECE was observed at a beam current of ~900 mA during Phase-1 (w/o mag. fields).
 • EC → Electron multipacting → Non-linear behavior of pressure

• TiN-coated beam pipes with antechambers at drift spaces were the source of EC.
 • Measured electron density is near to the threshold of the instability, ~3x10^{11} e^- m^{-3}
 • Permanent magnets around the beam pipes suppressed the non-linear pressure rise.

• This ECE was cured by permanent magnets around beam pipes after Phase-2.
 • Magnetic field of ~50 G in the beam direction.

• At present, any obvious signs of EC are not observed.
Electron cloud effect

• In a beam study, the ECE (vertical beam size blowup) was not observed until a current linear density of 0.4 mA bunch$^{-1}$ RF bucket$^{-1}$ (line charge density) with magnetic fields.

• Beam pipes with antechamber and TiN coating were found to be effective to suppress EC compared to a round Cu beam pipe (KEKB type). [0.04 \rightarrow 0.2 mA bunch$^{-1}$ RF bucket$^{-1}$]

• However, the threshold of ECE w/o magnetic fields was lower than expected, although the δ_{max} of TiN coating seems low (1.2\sim1.0).

• The most plausible reason is that the irradiation of photons in the beam channel is stronger than expected due to the vertical spread or scattering of SR.

• These results indicates that photoelectrons is very important for the ECE in the real machine.
Beam losses accompanied by pressure bursts

- Beam aborts (losses) accompanied by local pressure bursts have been frequently observed in especially LER during Phase-1.
 - The locations of the pressure bursts have spread to more than 20 points along the ring.
 - In most cases, the bursts were observed near aluminum beam pipes in dipole magnets, with groove structure (a measure against ECE).
 - The beam-loss monitors at collimators triggered the beam aborts.
 - Beam loss lasted a few ms before the beam abort.

Typical pressure burst

![Typical pressure burst graph](image)

Typical abort log for the case pressure burst was observed. (H. Ikeda, KEK)

![Typical abort log](image)

Groove in the beam pipe

![Groove in the beam pipe](image)
Beam losses accompanied by pressure bursts

- A possible cause: Collision of “dusts” with circulating beams.
 - Groove structure is likely to catch dusts.
 - Aluminum grooves were formed at the first stage of beam pipe fabrication, before cutting.
 - Lots of large dusts were gathered from a beam pipe after the knocking.
 - A “knocker” was set at a beam pipe in a bending magnet, where the burst had been observed frequently, and we could reproduce the phenomena by knocking it.

- As a countermeasure, we knocked most of beam pipes in bending magnets (with groove) around the ring before Phase-2.
 - The reduction of the frequency of bursts was observed after Phase-2.
 - Continue to be careful at higher beam currents.
Rapid heavy beam loss

- Recently, rapid (in $20\sim30\mu s = 2 \sim 3$ turns) heavy beam losses have been observed in (mostly) LER and HER.
 - Sometimes, it resulted in damage of collimator head and QCS (SCC final focus magnets) quench, and also damage of detectors.
 - No clear transvers oscillation has not been observed by BOR (Bunch Oscillation monitor)
- The cause has not been clarified yet.
 - Possible causes will be “dust event” and/or beam instability.
 - However, the beam loss is so fast, and simulations so far have not been able to explain the phenomena.
 - Preparation of more loss monitors around ring is planned to identify the origin points of these losses.
- An urgent issue to be solved to increase beam current further.
Beam collimator

- New collimators of 3 horizontal and 1 vertical type, and 7 horizontal and 3 vertical type have been installed in HER and LER, respectively.
- 16 KEKB-type collimators have been installed in HER.
- These collimator is working well so far to suppress the background.
- Problems
 - Excitation of transvers mode coupling instability (TMCI) due to their high-beam impedance. (Narrower aperture than expected in the design phase.)
 - Damage of collimator head due to beam hitting.
- Details will be reported by T. Ishibashi (KEK) in the impedance session.
Summaries

• The SuperKEKB vacuum system has been working mostly well.
 • No abnormal temperature increase or vacuum pressure was observed for the new vacuum components up to beam currents around 1 A.
 • Air leak from MO-type flange happened in wiggler sections due to localized heating by SR.
 • Vacuum scrubbing progressed steadily.
 • The effects of the antechambers and TiN coating against ECE were confirmed.
 • No clear indication of ECE has not been observed with permanent magnets.
 • Effect of photons hitting in the beam channel seems larger than expected.
 • Beam aborts (losses) accompanied by local pressure bursts have been frequently observed in the LER during Phase-1.
 • Knocking of beam pipes seems working to some extent after Phase-2.
 • Very rapid heavy beam losses are now frequently observed.
 • The analysis is ongoing.
 • Beam collimator has been working well for suppressing background.
 • Damage of head is now a serious problem. See Ishibashi’s talk.

• We will continue the operation aiming at further higher luminosity by increasing beam currents and squeezing β_y^*. It is very challenging and exciting.
• The vacuum system must be monitored closely and carefully.
Thank you for your attention.
Pre-installation work

- Basically all beam pies are baked at 150°C for ~24 hours including NEG activation before installing them into the tunnel.
- Inside of LER beam pipes are coated with thin TiN to mitigate ECE.
Construction period

- Fabrication of components
- Pre-installation works (TiN coating and pre-baking).
- Installation of components into the tunnel
- Update of sub-systems
- Baking of ion pumps and NEG activation in the tunnel are on going.
NEG activation in tunnel

• NEG activation in the tunnel
 • Regions between gate valves in the tunnel were evacuated in series after installing beam pipes and bellows chambers
 • After rough pumping and He leak check, ion pumps were baked and NEG pumps are finally activated.
 • No baking of beam pipes in the tunnel
 • After NEG activation, average pressures of less than \(1 \times 10^{-7}\) Pa were obtained for most cases.

NEG activation pattern

A typical trend of pressures during activation
Installation into tunnel

- Installation of beam pipes is in progress in the tunnel.
- Approximately 95% of pipes have been installed (2015/2/6).
Installation into tunnel

- Installation of bellows chambers follows the beam pipes.
Residual gases

- Residual gases during the beam operation have been monitored with a quadrupole mass analyzer (QMA) at an arc section.
- The QMA is located just above a sputter ion pump.
 - The main gases are hydrogen ($m/e = 2$), carbon monoxide ($m/e = 28$), methane ($m/e = 16$), water ($m/e = 18$), and carbon dioxide ($m/e = 44$).
 - The high partial pressure of methane should be due to the pumping system using NEG as a main pump.
 - Because the beam pipes were not baked in the tunnel, water vapor still remains in the beam pipe.
Main parameters (Design)

- The main ring consists of 4.0 GeV positron ring (Low energy ring, LER) and 7.0 GeV electron ring (High energy ring, HER).
- Aiming a peak luminosity of $\sim 8 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$, ~ 40 times higher than that of KEKB.

<table>
<thead>
<tr>
<th></th>
<th>LER (positron)</th>
<th>HER (electron)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>4.0</td>
<td>7.0</td>
<td>GeV</td>
</tr>
<tr>
<td>Beam current</td>
<td>3.6</td>
<td>2.6</td>
<td>A</td>
</tr>
<tr>
<td>Circumference</td>
<td></td>
<td>3016</td>
<td>m</td>
</tr>
<tr>
<td>Number of bunches</td>
<td>2500 (Bunch interval = 1.2m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bunch current</td>
<td>1.44</td>
<td>1.06</td>
<td>mA</td>
</tr>
<tr>
<td>Bunch length</td>
<td>6.0</td>
<td>5.0</td>
<td>mm</td>
</tr>
<tr>
<td>$\varepsilon_x/\varepsilon_y$</td>
<td>3.2/8.64</td>
<td>4.6/11.5</td>
<td>nm/pm</td>
</tr>
<tr>
<td>$\beta_x^/\beta_y^$</td>
<td>32/0.27</td>
<td>25/0.3</td>
<td>mm</td>
</tr>
<tr>
<td>Crossing angle</td>
<td></td>
<td>83</td>
<td>mrad</td>
</tr>
<tr>
<td>Luminosity</td>
<td>8×10^{35}</td>
<td></td>
<td>cm$^{-2}$s$^{-1}$</td>
</tr>
<tr>
<td>Bending radius (Arc)</td>
<td>74.68 (arc)</td>
<td>105.98 (arc)</td>
<td>m</td>
</tr>
</tbody>
</table>
Main parameters related to vacuum system

<table>
<thead>
<tr>
<th></th>
<th>LER (positron)</th>
<th>HER (electron)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material of new beam pipe</td>
<td>Al-alloy (arc)</td>
<td>OFC (arc), OFC (wiggler)</td>
<td></td>
</tr>
<tr>
<td>Cross section of new beam pipe</td>
<td>φ90 + Antechambers</td>
<td>Racetrack (50×104)</td>
<td></td>
</tr>
<tr>
<td>Main pumps</td>
<td>NEG (strip)</td>
<td>NEG (strip + cartridge)</td>
<td></td>
</tr>
<tr>
<td>Total Power of SR</td>
<td>1.1 (arc: 2200 m)</td>
<td>5.2 (arc: 2200 m)</td>
<td>MW</td>
</tr>
<tr>
<td></td>
<td>6.3 (wiggler: 300 m)</td>
<td>1.1 (wiggler: 100 m)</td>
<td></td>
</tr>
<tr>
<td>Critical Energy of SR</td>
<td>1.9 (arc)</td>
<td>7.2 (arc)</td>
<td>keV</td>
</tr>
<tr>
<td></td>
<td>9.2 (wiggler)</td>
<td>17 (wiggler)</td>
<td></td>
</tr>
<tr>
<td>Max. SR power line density</td>
<td>2.6 (arc)</td>
<td>7.7 (arc)</td>
<td>kW m⁻¹</td>
</tr>
<tr>
<td></td>
<td>13 (wiggler)</td>
<td>9 (wiggler)</td>
<td></td>
</tr>
<tr>
<td>Avg. photon flux line density</td>
<td>~5.5×10¹⁸(arc)</td>
<td>~6.8×10¹⁸(arc)</td>
<td>photons s⁻¹ m⁻¹</td>
</tr>
<tr>
<td></td>
<td>~4.7×10¹⁹(wiggler)</td>
<td>~1.3×10¹⁹(wiggler)</td>
<td></td>
</tr>
<tr>
<td>Linear pumping speed</td>
<td>~0.1 (arc)</td>
<td>~0.06 (arc)</td>
<td>m³ s⁻¹ m⁻¹</td>
</tr>
<tr>
<td>Ave. pressure with beam</td>
<td>~10⁻⁷</td>
<td></td>
<td>Pa</td>
</tr>
<tr>
<td>Ave. base pressure</td>
<td>~10⁻⁸</td>
<td></td>
<td>Pa</td>
</tr>
</tbody>
</table>
Number of main components

Types of beam pipes

<table>
<thead>
<tr>
<th>Type</th>
<th>HER</th>
<th>LER</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-type</td>
<td>86</td>
<td>421</td>
<td>507</td>
</tr>
<tr>
<td>B-type</td>
<td>24</td>
<td>152</td>
<td>176</td>
</tr>
<tr>
<td>S-type</td>
<td>100</td>
<td>415</td>
<td>515</td>
</tr>
<tr>
<td>T-type</td>
<td>19</td>
<td>14</td>
<td>33</td>
</tr>
<tr>
<td>Total</td>
<td>229</td>
<td>1002</td>
<td>1231</td>
</tr>
</tbody>
</table>

Types of NEG pumps

<table>
<thead>
<tr>
<th>Type</th>
<th>Length[mm]</th>
<th>LER</th>
<th>HER</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type-1</td>
<td>700</td>
<td>21</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>Type-2</td>
<td>1000</td>
<td>53</td>
<td>12</td>
<td>65</td>
</tr>
<tr>
<td>Type-3</td>
<td>1300</td>
<td>60</td>
<td>18</td>
<td>78</td>
</tr>
<tr>
<td>Type-4</td>
<td>1600</td>
<td>227</td>
<td>19</td>
<td>246</td>
</tr>
<tr>
<td>Type-5</td>
<td>1900</td>
<td>163</td>
<td>32</td>
<td>195</td>
</tr>
<tr>
<td>Type-6</td>
<td>2200</td>
<td>389</td>
<td>30</td>
<td>419</td>
</tr>
<tr>
<td>Type-7</td>
<td>2500</td>
<td>66</td>
<td>2</td>
<td>68</td>
</tr>
<tr>
<td>Type-8</td>
<td>2800</td>
<td>6</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Type-9</td>
<td>3100</td>
<td>0</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>985</td>
<td>141</td>
<td></td>
<td>1126</td>
</tr>
</tbody>
</table>

Types of bellows chambers

<table>
<thead>
<tr>
<th>Type</th>
<th>Material</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bell_104x50-Cu</td>
<td>Cu</td>
<td>42</td>
</tr>
<tr>
<td>Bell_122x50-Al</td>
<td>Al</td>
<td>4</td>
</tr>
<tr>
<td>Bell_60x40</td>
<td>Al, Cu</td>
<td>19</td>
</tr>
<tr>
<td>Bell_f50x190-Ar</td>
<td>Cu</td>
<td>35</td>
</tr>
<tr>
<td>Bell_f80-Cu</td>
<td>Cu</td>
<td>31</td>
</tr>
<tr>
<td>Bell_f80x220-Ar</td>
<td>Cu</td>
<td>84</td>
</tr>
<tr>
<td>Bell_f90</td>
<td>Al, Cu, Al-Cu</td>
<td>19</td>
</tr>
<tr>
<td>Bell_f90x220</td>
<td>Al, Cu, Al-Cu</td>
<td>991</td>
</tr>
<tr>
<td>Bell_f90x220H24-Al_E</td>
<td>Al</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1241</td>
</tr>
</tbody>
</table>