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Multi-part “overview” talk

I. Universal inference (hypothesis testing)

2. Online control of false discoveries (multiple hypothesis testing)
3. E-values as an alternative to p-values

4. Confidence sequences (peeking at your data as you collect it)
5. Masking (interacting with data after collecting it)

6. Conformal prediction (black-box uncertainty quantification in ML)



For regular models, LRT is easy

Consider Yy, ..., Y, ~ pg: for some 0* € ©.
lestHy: 0* € Oy vs. H, : 6 € ©; D B,
- L ZO)
Wilk's Thm (regular models): 2log ——— — y7 under H,,.
Z(6)

Z0) = Hpe(Yl-) is the likelihood function. éo/l s MLE under ©,, .
i=1

d is difference in dimensionality between @, 9, .

| | <
LRT rejects if 21og

Under regularity conditions, Pr(rejection) < a+ 0,(1).
H



Irregular composite testing problems are common

|. (Mixtures) Hy : pp+ is a mixture of k Gaussians

2. (Nonparametric shape constraints) Hy : p is log-concave

3. (Dependence) Hj, : pg« i1s Gaussian MTP, or Ising MTP,

4. (Linear model) H, : 6* is k-sparse

5. (Factor models or HMMs) H,y : 6% has k hidden factors/states

6. (Gaussian Cl testing) Hy : X; L X5, H;: X; L X, | X5

In all cases, LR limiting distribution and a level-a test are unknown.

In all these cases, we can (approximately) calculate MLE under null.



Our proposal: split LRT

(regular models) LRT rejects if 2 1og

(any model) split data into two parts Dy, D, .

| - Zy(0)
split LRT rejects if 21og — > 2log(l/a).
Z(0))
L) = H po(Y) is the likelihood on D, .

ieD,
0, is any estimator (MLE/Bayes/robust) under ®, on D, .

0, is MLE under ©, on D,,.

Under no regularity conditions Pr(rejection) < .
HO



Extensions
in the paper

Universal inference

PNAS, 2020

|. Profile split-likelihood

2. Robust ‘powered’ split-likelihood

3. Smoothed split-likelihood

4. Condrtional split-likelihood

0. Relaxed maximum likelihood

6. lesting to model selection using sieves
/. Derandomization via averaging

8. Universal confidence sets

9. Extension to sequential settings
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A sequence of sequential experiments (science?)

Experiment

10 20 30 40
Time / Samples

No temporal or longitudinal
effects In this talk



Given a possibly infinite sequence
of tests (p-values), can we control
the FDR in a fully online fashion?

Time
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How do we set each error level
to control FDR at any time!?

Goal: Vre N,FDR() < a.

(decisions are irrevocable)

Offline FDR methods
do not yield this guarantee.




Online FDR control : high-level picture

Error budget
for first expt.
/ Error budget for

second expt.
N ‘ Expts. use wealth

Discoveries

earn wealth

—®
\ ‘ Error budget

s data-dependent
Remaining error budget
or “alpha-wealth” ‘ Infinite process




Extensions
in the paper(s)

|. Familywise error rate
2. False coverage rate
3. False sign rate

4. Post-hoc bounds

5. Powerful, adaptive algorithms

R package called “onlineFDR”
Collaboration led by David Robertson (Cambridge)




Some questions

(A) In any scientific subfield, do the relevance and importance of
claimed or published "discoveries" depend on the order in which hypotheses
are tested by various scientists over time? (and should they?)

(B) For large publicly-shared scientific datasets (genetics/neuroscience/
heart/...), is the statistical validity of proclaimed discoveries dffected by how
many people have downloaded the dataset and tested hypotheses on it/
Can the dataset get "stale"’ What happens when some downloads lead
nowhere, while others lead to interesting findings and are published?



Some (more) questions

(C) We often correct for multiple testing at a particular "scale" (eg: within
a single paper, or within one simulation within a paper), but should we care
about other granularities? (lab-level? field level? journal level?) If yes, then how
would one do this? If not, why not?

(D) Instead of testing 100 hypotheses today, and thus being forced to
correct for multiple testing, what if we randomly ordered the hypotheses, and
tested one today, and one tomorrow, and one the day dfter, and so on for |00
days---since each day we only test one hypothesis, are we allowed to do so
without any multiplicity correction?



Online control of the false discovery rate with decaying memory
NeurlPS 2017 "

SAFFRON: an adaptive algorithm for online FDR control
ICML 2018

ADDIS: online FDR control with conservative nulls
NeurlPS 2019

The power of batching in multiple hypothesis testing
AISTATS 2020 |

Online control of the false coverage rate and false sign rate
ICML 2020

Simultaneous high probability bounds on the FDP
Annals of Statistics, 2020

Online control of the familywise error rate

Statistical Methods in Medical Research, 202 |

Asynchronous testing of multiple hypotheses

Journal of Machine Learning Research, 202 |
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P-values E-values

A p-value is a random variable P An e-value is a random variable E

such that, under the null, such that E > 0, and
Pr(P <t) {tforanyt € [0,1] under the null, E[E] < 1.
Small p-values are evidence Large e-values are evidence
against the null: against the null:
Reject f P L «r. Reject if E > 1/ax.
Suppose Pjan_jun > 0.05 Suppose Ejgn jyn < 20
and P)y-Dec < 0.05, where and Ej|-Dec > 20, where

Pr(Py|.Dec £ f|DJan_Jun) <t ELE)y-Dec | Ejan-jun] = 1
How do you combine them? Eior = Ejan-junjul-Dec:



P-values E-values

Need full distributional information Need moment bounds of
of test statistic to calculate p-value.  test statistic to calculate e-value.

Often cannot calculate In The split likelihood ratio
“Irregular’” testing problems s an e-value
Often resort to asymptotics Typically valid in finite samples
Often need stronger dependence Can be constructed for
assumptions on data weakly dependent data

Need corrections for dependence No corrections for dependence
in multiple testing in multiple testing



Multiple testing under arbitrary dependence

The e-Benjamini-Hochberg procedure:
Given E, ..., Ex for K hypotheses, define

K
k*:=max 4 k: Ep>— .
ko
Reject the k™ hypotheses with largest e-values.

Theorem: The e-BH procedure controls the FDR at level o
under arbitrary dependence between the e-values.

False discovery rate control with e-values

Wang, Ramdas (arXiv:2009.02824)
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A “confidence sequence” for a parameter
is a sequence of confidence intervals (L,,, U,)
with a uniform (simultaneous) coverage guarantee.

P(Vn>1:0e(L,U)>1-a.

Sample size

Darling, Robbins '67/

Lal "84

Much stronger than the pointwise (fixed-sample)
confidence intervals guarantee:

V> 1,POe (L, ,U)>1-a.



Example: tracking the mean of a Gaussian
or Bernoulli from i.i.d. observations.

X, X5, ... ~N(0,1) or Ber(0)

Producing a confidence interval at a fixed time
is elementary statistics (~100 years old).

How do we produce a confidence sequence!
(which is like a confidence band over time)



(Fair coin)

Confidence bounds

1.0
0.9 1
0.0 7

—0.59 Empirical mean

—1.0 : ; .
10 10° 10° 10
Number of samples, ¢

Pointwise Cl (CLT) — Anytime C|



Eg: If X; is Gaussian, or bounded in [—1,1], then

loglog(2n) 4+ 0.7210g(5.19/a)

n

s a (1 —a) confidence sequence for its mean u.




P Joe @, Uyh<a.
neN

Some implications:

| .Valid inference at any time, even stopping times:
For any stoppingtme t: P(@ & (L, U,)) < a.

2.Valid post-hoc inference (in hindsight):
For any random time T : P(0 & (L, Uy)) < .

3. No pre-specified sample size:
can extend or stop experiments adaptively.



Time-uniform Chernoff bounds V|a nonneg supermg.
Probability Surveys, 2020 L

Annals of Statistics, 202 |

Quantile CSs for A/B testing and bandits

(major revision, Bernoulli)

CSs for sampling w/o replacement
NeurlPS, 2020

Uncertainty quantification using martingales
for misspecified Gaussian processes

ALT, 202 |

Sequential nonparametric testing with the
law of the iterated logarithm

UAIL 2016
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If you blur the data (appropriately) and then peek
all you want, you can be protected from overfitting
and selection bias. We call this masking.

The user can progressively unmask the data,
one point at a time, thus gaining power,
as long as the appropriate martingale test is used.



One example : “masking the p-values’ enables
exploration while avoiding selection bias

Data, “Carving”

“masked p-value” / \ “missing bit”

g(P;) = min(P;, 1 — =2I(P; > 1/2)

used for “selection” used for “inference”

Selection

______________________________

______________________________

: Shrink > Rejection set R;
\| Masking l /. .
p_values {PL} II, UnmaSklIlg
/! If FWER; > « ¥ AWIf FWER: < ¢
{h(P)} goozzmmmmmmmmmmmmg

> Estimate FWER; j > Report R

Error control



A general interactive framework for FDR control under structural constraints

Biometrika, 2020

Interactive martingale tests for the global null

Electronic Journal of Statistics, 2020

Which Wilcoxon should we use? An interactive rank test and other alternatives

(Biometrical Journal, minor revision)
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Prediction vs ‘“Predictive Inference”

Training data

(U (TXY)) = (X =Y
Algorithm &/

PredictorA: & - ¥

......

( +1,?D( 1))
Pr(Y,,,€eC, X)) =>1—-a.



Distribution-free Predictive Inference

Given data D, = (X, Y)), ..., (X, ¥}) ~ Px X Pyx = Pyy,
any algorthm of : (U>2 (X X Y)") = (X = ¥),
and X, ~ Py, produce aset C(X,;;) = Cy p (X,41) ST

for all Pyy, algorithms «f, Pr(Y¥,,, € C(X, ) >1—-a.

Algorithmic Learning
* inaRandom World

Vovk, Shafer, and others, 2000-19



The jackknife+

lTraining data D Predictor A_; = Z(D \ (X;,Y)))
o

Predictor A_, = (D \ (X, Y)))
PredictorA_, = 4D\ (X,Y)))

LOO scores R, =Y, —A_(X)|. Let R = (R} icin -
g,_,(R) := (1 — a) quantile of {R,,...,R }.

Jackknifet: Cp (X,11) = [¢,(1A_i(X, 1) = Ri}), q1_o({A_{(X, ) + RiD].

PO SN

Then, Pr(Y,,, € C;. (X)) = 1-2a. “\"‘/”

BaCaRaTi20



Extensions
in the paper(s)
|. Handling covariate and label shift
2. Ensemble quantile methods
3. Conformal classification
4. Distribution-free classifier calibration
5. Random effect models

6. Conditional predictive inference



Predictive inference with the jackknife+
Annals of Statistics, 202 |

The limits of distribution-free conditional predictive inference

Information and Inference, 2020

Conformal prediction under covariate shift
NeurlPS, 2019

Distribution-free binary classification: prediction sets, confidence intervals and calibration

NeurlPS, 2020

Distribution-free prediction sets with random effects

(JASA, minor revision)
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