Plans for CMS Upgrades

1

J. Nash, Imperial College London

CMS Upgrades 23 June 2010

Outline

CMS Plans for Shutdowns in this decade

Technical Proposal

Requirements for the phases of the upgrades: ~2010-2020

- This decade will see the initial operation of the LHC and the increase of energy and luminosity towards the design luminosities.
- Goal of extended running in the second half of the decade to collect ~100s/fb
- Motivation for upgrades during this phase
 - may be based on required performance for higher luminosity, better physics performance, better reliability of operation

2020-2030 – High Lumi LHC

- Continued operation of the LHC beyond a few 100/fb will require substantial modification of detector elements
- The goal is to achieve 3000/fb in phase 2
- Need to be able to integrate ~300/fb-yr
- Will require new tracking detectors for CMS
- Still substantial R/D required for the detectors to be able to operate at these higher luminosities

Agreed at the May 2008 Upgrades Workshop http://indico.cern.ch/conferenceDisplay.py?confld=28746

CMS Upgrade Scope

2015

2012 2015

2012 /2015 2015

CMS Upgrades ideal scenario

> 2012 Shutdown

- Begin Installing forward muon systems
- HO SiPMs (Hadronic Calorimeter Tail Catcher)
- HF PMTs (Forward Hadron Calorimeter eta 3-5)
- Pixel Luminosity Telescope

2015 Shutdown

- Install new beampipe
- Install new pixel detector
- Install HB/HE photo-detectors
- Install new trigger system

> 2020 Shutdown

- Install new tracking system
- Major consolidation/replacement of electronics systems
 - Including potentially ECAL electronics
- ECAL Endcaps (subject of a task force)
- DAQ system upgrade

What is required of new detectors for operation up until 2020?

- They should be able to operate with a peak luminosity of up to 2 x 10³⁴
- They should be able to cope with an integrated luminosity of up to as much as 700/fb
 - Looking at potential increase in luminosity, this now not an issue until late in the decade.
 - Be able to cope with whatever scenario develops before the long shutdown to replace triplets/tracking detectors
- They should offer increased physics performance

2012: Muons

- CMS design has space for a fourth layer of forward muon chambers – both Cathode Strip Chambers and RPCs
 - They give much better trigger robustness especially at higher luminosities
 - A fourth layer of shielding is also for-seen (YE4)
- These are built to the same design as those already installed
- Technically ready to produce chambers
 - Funding is not yet fully secured
- Imminent Steps
 - Prepare bat 904 for CSC Production, and produce first chambers this year
 - EDR this summer
 - □ Plan for RPC Production
 - □ Installation plan for CSC/RPC/YE4

Phase 1 : Muons ME4/2 upgrade motivation

- Compare 3/4 vs. 2/3 stations:
 - (Triggering on n out of n stations is inefficient and uncertain)
- Recent simulation with & without the ME4/2 upgrade:
 - The high-luminosity Level I trigger threshold is reduced from 48 → 18 GeV/c

23 June 2010

CMS Upgrades

N Sep 2009

CSC Factory Production Site at CERN

Floor plan layout at Bldg 904 (Draft)

2nd Shutdown: Pixels

- Well developed plan for a new 4 Barrel layer, 3 end disk low mass pixel detector
 - Fall forward scenario gives a way to proceed at full speed with the current mature design while giving aggressive options
- Issues for Pixel replacement
 - Radiation hardness, reparability of the inner layer(s)
 - Buffer sizes (data loss at higher luminosities)
 - Including the case where we achieve luminosity using 50ns bunch spacing – giving higher number of interactions/bunch
 - B tagging capabilities

New 4 Layer pixel detector • New Layout: 4 layers and 3 disk/side

- Baseline Option: 4 layers/3 disks new 250 nm PSI46dig ROC

- PSI46dig ROC: reduce data losses at high luminosity, more robust digital readout, protection mechanism against large clusters induced by beam background

- Inner layers and inner disks: designed for easy and fast replacement.

- Inner layer: closer to IR (from 44 mm present to possibly 39-34 mm maximizing benefits beam pipe reduction to 25 mm)

- Outer layer and disks: closer to Tracker Inner Barrel (160 mm w.r.t 106 mm present detector)
- Material budget: aim for major reduction (at least 60% reduction)
- Fall forward line: Two inner layers/inner disks better hit resolution and radiation tolerance New ROC chip optimized for lower threshold: possibly able to digest higher rate, 50% pixel area (75µm x 100 µm or smaller) *a* thinner sensors

Current Pixel System with Supply Tubes / Cylinders

 \rightarrow inserstion envelope for FPIX

CMS Upgrades 23 June 2010

BPIX & Supply Tube with AOH, DOH, PCBs & Fibres

2 Barrels & 4 Supply Tube Sections & CO₂ & Cables

Ratio (3 Layers 2008 / 4 layers 2015) ~ 2.62

23 June 2010 Tracker Upgrade Week, 27.April, 2010

Overview of 2015 4 Layer BPIX System

1 Layer of new Ultra Light Mechnaics

• CO_2 cooling circuit (50µm wall thickness tubes) pressure tested to 100 bar

New BPIX Supply Tube

Note: Some minor carbon fiber parts not yet glued.

CO2 cooling loops are to be inserted

18

CMS Upgrades 23 June 2010

BPIX / FPIX Envelope Definition for 4 Hit Pixel System

All Identical disks (1st and 2nd disks in locations to maximize 4-hit eta coverage)

6 disks = (6x68) outer + (6x44) inner = 672 2x8 modules (10752 ROCs)

CMS Upgrades 23 June 2010

19

The Half Disk (to be completed)

2015:New Photodetectors for Hadron Calorimeter-SiPMs

- Array of avalanche photo diodes ("digital" photon detection)
 - Array can be 0.5×0.5 up to 5.0×5.0 mm²
 - Pixel size can be 10 up to 100μ
- All APDs connect to a single output
 - Signal = sum of all cells
- Advantages over HPDs:
 - ▶ 28% QE (x2 higher) and 10⁶ gain (x500 higher)
 - More light (40 pe/GeV), less photostatistics broadening
 - Very high gain can be used to give timing shaping/filtering

SiPM

New Photodetectors allow finer segmentation of readout in depth

New segmentation – more robust against damage to inner scintillator layers

2nd shutdown: Trigger

- Issues for Trigger upgrade
 - New technology for trigger systems
 - More common components, easier to maintain
 - Finer granularity processing better performance
 - Key Issue: How to smoothly integrate a new trigger into a running experiment
 - Parallel operation
 - Slice tests of new detector back/ends and trigger system

Technical Coordination: Shutdown planning 2011-13: 1st draft

Time	Est. Int. Lumi/fb- I	Tasks	Logistic Scenario
2011-2013	30-50	Infrastructure modifications (i-ix)	fully open both ends
		Test beampipe region RP shielding	
		HO & CASTOR phototransducer change	
		YE4-z shielding wall/YE4+z shielding wall	
		4'th muon endcap station –z (CSC + RPC)(+ possibly RPC for +z)	
		CASTOR, TOTEM, ZDC removed for pp	
		Pixel Luminosity Telescope (PLT) installed.	
		BSC extension, FSC completion	
		ZDC crane installation	

After which CMS should be ready for 6.5 TeV, 50fb⁻¹ and $1-2 \times 10^{33}$

Technical Coordination: Shutdown planning 2014-16: 1st draft

Timeframe	Est. Integrated Luminosity/fb- I	Tasks	Logistic Scenario
2014-2016	30-50	central beamipe, $\phi \longrightarrow 50$ mm	fully open both ends
		Pix/BCM removed, bakeout required	
		HB/HE front end re-build +z and -z	
		HF phototube replacement +z and -z	
		l'st muon station readout granularity +z and –z	
		Muon barrel front-end revision	
		4 layer, low-mass pixel tracker	
		BSC replacement.	
		Trigger modifications for high lumi	

After which CMS should be ready for 7TeV, up to 700fb⁻¹ and 2×10^{34}

Technical Proposal

- We are committed to producing a Technical Proposal in September 2010.
- Submit to LHCC for approval
- explains our plans, and rationale for taking decisions on potential upgrades

Technical Proposal Progress... On track for September submission

Contents

1	Intro	troduction		
2	Phys	'hysics Justification for the CMS Upgrade		
	2.1	Simulation Setup		
	2.2	Hadro	on Calorimeter Mitigation	
	2.3	Muon	System Completion	
	2.4	Pixel U	Upgrade	5
	2.5	Trigge	r Upgrade	1
	2.6	Physic	zs Studies	ł
3	The	CMS M	Auon System Upgrades	13
	3.1	Introd	uction	13
	3.2	Forwa	rd region: CSC Muon Detector	1:
		3.2.1	Performance Limitations	14
		3.2.2	Description of the Muon detector upgrade plan	12
		3.2.3	R&D needed in preparation of the Phase 1 TDR	2
		3.2.4	Alignment with a possible Phase 2 upgrade	2
		3.2.5	Cost, Schedule, and Cost Sharing	2
		3.2.6	Implementation and infrastructure issues - SHOULD GO TO THE LAST	2
	99	DT M	non Detector	2
	0.0	331	Introduction	2
		332	Theta Trigger Board verslagement	2
		333	Sector Collector Ungrade	2
	34	RPCN	Auon Detector	3
		341	Introduction	3
		342	Physics motivation for the forward un-scope	34
		34.3	Detector design and layout	34
		344	Electronics	3/
		34.5	Services	4
		34.6	Production facilities	4
		3.4.7	Project organization	43
	3.5	Impor	tant Interdependencies of CSC, RPC, DT and MPGD Upgrade Implemen-	
		tation	and Infrastructure issues - RENAME, STUFF FROM A BOVE COMES HERE	49
		3.5.1	The new production facility in Building 904 for CSC and RPC Production	49
4	Barr	el and I	Endcap Hadron Calorimeter Repairs, Improvements, and Upgrades	53
	4.1	Outer	Calorimeter (HO)	50
	4.2	Barnel	and Endcap Calorimeters (HB/HE)	6
		4.2.1	Introduction	6
		4.2.2	Simulation Studies	62
		42.3	Problems Motivating the Improvement and Upgrade Program $\ldots \ldots$	60

		424	The Proposed Improvement and Upgrade Plan 73
		425	R&D for Phase 1 86
		426	Implamentation and Infrastructure Issues 86
		427	Alignment with possible Phase 2
		429	Cost and Schedule 97
		42.0	Conductor 90
		4.2.9	Conclusion
5	Forv	vard Ra	pidity Calorimeter Systems 91
	5.1	Forwa	rd Hadron Calorimeter (HF)
		5.1.1	Large Energy Events in HF PMTs
		5.1.2	HF PMT System Upgrade
		5.1.3	Cost of HF PMT Replacement
	5.2	CAST	OR
		5.2.1	Detailed description of tasks
		5.2.2	Work details, cost and schedule
	5.3	Flow I	Detector (FD) for the Zero Degree Calorimeter (ZDC).
		53.1	Design Requirements
		5.3.2	Design of Active Area
		5.3.3	Photodetector
		5.3.4	Detector Preparation
		5.3.5	Project Scope, cost, and schedule
6	Pixe	1 Detect	tor Improvements and Upgrades 109
	6.1	Overv	iew of the Phase 1 Upgrade plans for the pixel detectors
	6.2	Perfor	mance limitations
		6.2.1	Material Budget and Other Mechanical Considerations
		6.2.2 Electronics Bandwidth	
		62.3 Sensor Radiation Hardness	
	6.3		
		63.1	Geometrical Layout
		6.3.2	CO2 Cooling
		6.3.3	DC-DC Conversion
		6.3.4	New Beam Pipe
		6.3.5	Front End Electronics
		6.3.6	Sensor Module
		6.3.7	Upgrade Design for BPIX
		6.3.8	Upgrade Design for FPIX
		6.3.9	Material Budget Reduction
		6.3.10	Pixel Module Assembly and Testing
		6.3.11	Testing and Commissioning at TIF
		6.3.12	Replacement Strategy and Options
		6.3.13	Performance Studies
		6.3.14	Improvement to the HLT
	6.4	R&D F	Plan

CMS Upgrades 23 June 2010

Conclusions

Firm planning for the upgrades in this decade

- Technical Proposal being prepared now submitted September
- R/D for new tracking systems required in the next decade well underway