

The LHCb Upgrade: Progress & Plans

Sheldon Stone

General Physics Justification

- Expect New Physics will be seen at LHC
 - Standard Model is violated by the Baryon
 Asymmetry of Universe & by Dark Matter
 - Hierarchy problem (why $M_W << M_{Planck}$)
- However, it will be difficult to characterize this physics
- How the new particles interfere virtually in the decays of b's (& c's) with W's & Z's can tell us a great deal about their nature
- It is also possible that b or c decays will reveal physics beyond the SM on their own

Hint of New Physics:
$$A_{sl}$$

• New D0 measurement
• Idea here is to use dilepton asymmetry
 $A_{SL} = \frac{\Gamma(b\bar{b} \rightarrow \mu^+ \mu^+ X) - \Gamma(b\bar{b} \rightarrow \mu^- \mu^- X)}{\Gamma(b\bar{b} \rightarrow \mu^+ \mu^+ X) + \Gamma(b\bar{b} \rightarrow \mu^- \mu^- X)}$ Fermilab-Pub-10/114-E
Evidence for an anomalous like-sign dimuon charge asymmetry
• D0 measures $A_{sl} = (-9.57 \pm 2.51 \pm 1.46) \times 10^{-3}$
• SM prediction is $(-2.3 \pm 0.6) \times 10^{-4}$
• Only 3.2 σ , therefore a hint to be pursued by LHCb

But how far down do we need to go & how far can we go?

Little Higgs Model with T Parity

- There exist regions of parameter space consistent with measurement where large ϕ_S is predicted & ΔM_S is found somewhat smaller than in the SM.
- In particular, significant enhancement of \$\phi_S\$ & the semileptonic asymmetry \$a_{SL}(S)\$ relative to the SM are found
 D0 result 42x SM, would rule out these
- •From Blanke & Buras, [hep-ph/0703117]
- ■Need precision measurements of CP asymmetry in $B_S \rightarrow J/\psi \phi \& \mathscr{C}(\overline{B}_S \rightarrow D_S^+ \ell^- \nu) - \mathscr{C}(B_S \rightarrow D_S^- \ell^+ \nu)$

Background is dominated by combinations of $b \rightarrow \mu^* X b \rightarrow \mu^* X$ events.

Running Conditions - Nomina

- Luminosity 2x10³² cm⁻²/s at beginning of run
- Take σ = 60 mb, [σ (total) σ (elastic) σ (diffractive)]
- Account for only 29.5 MHz of two filled bunches

Upgrade Running Conditions

- At L=10³³ increases average # of int/xcrossing to only ~2.3
- At L=2x10³³ increases to ~4.6
- We are learning a great deal from current running, since the L/bunch xing is high

Upgrade Trigger & DAQ

- Readout entire detector at 40 MHz
- Have an software based trigger
- Use detached vertex information early on in Trigger
- Take advantage of Moore's law increases in
 - CPU & storage
- Have "Interaction trigger" to be able to throttle rate

Constraints

- Need to be ready for 2016 installation
- Super Belle is approved (see http://kek.jp/intra-
 - e/press/2010/KEKBupgrade.html) and
 - plans to start taking data in 2014, with a final projected luminosity of 8x10³⁵ cm⁻²/s, and a lower initial luminosity.

Money

Learning from current running

Two Stage Plan

- First Upgrade step with a goal of L=10³³, followed by a second upgrade to higher L.
- First phase: After 6 fb⁻¹, collect ~50 fb⁻¹ more
- New VELO, Save Straws, but new electronics, RICH photon detectors, TT & IT replacement, Calorimeter & some muon electronics
- Costs: very rough estimate about ½ that of the current detector

Phase II

- Detector Improvements independent of instantaneous Luminosity
 - Torch or Super-RICH (Maybe in Phase I ?)
 - Better Ecal segmentation
- Improvements necessary to run at higher L
 - Changes to tracking: IT & OT geometry

Uprgrade Categories

- Introduction
- Physics goals
- VELOPiX
- Tracking (baseline Si & Straws)
- RICH TORCH
- Calorimeters
- Muon
- Online
- Trigger
- Electronics
- Simulations & Software

Progress

Electronics/DAQ Architecture

- •Zero-suppressed readout
- •GBT link used

Upgrade Electronics Specifications

Recent progress on: Modular architecture Interaction trigger **DAQ** interface Zero suppressed + Non-zero suppressed OK within a sub-detector Computing plan Next steps: Organize simulations for defining buffering limits. We need each sub-detector to provide data

Common projects

GBT + Versatile Link:

Good progress Proto SERDES: initial tests look good GBTIA successfully coupled to photodiode Corrected version of GBLD under test

ACTEL FPGA irradiations postponed until August (Syracuse)

Infrastructure Using existing fibres, transmission limited to < 6 Gbit/s

Info needed on Radtol Voltage Regulators...... (OT, Calo replied)

New 'CC-PC' nearly ready (CBPF, Rio)

TELL40

From Jean-Pierre Cachemiche

Mezzanine-based proposal

ATCA 'motherboard'

Multiple mezzanines required: 'GBT-DAQ', 'GBT-ECS/TFC', 'GOL'

For data: ~ 96 input links (4.8 Gbit/s)

Output interface to DAQ under study: eg large buffers (don't rely on buffering in switch)

Starting to look at event building & data-packing

Simulations

- Optimize new detector components.
- Substantiate physics reach of the proposed upgrade:
 - More hostile event composition can easily wash out gains from luminosity increase (we have seen plenty of examples of this already).
 - The toughest part of heavy flavor experiment at hadronic collider is triggering, especially of hadronic final states. Realistic trigger simulations (timing!) unfortunately require mature and sophisticated simulation code.
- All detectors are being worked on substantial progress.
 LHCC July 6, 2010

VELO Upgrade

- Essential for establishing precision verticies
- Essential for trigger & tracking
- Upgrade baseline VELOPix is based on Medipix/Timepix Pixel readout chip

- $\hfill\square$ 256 x 256 pixels 55 μm square. Chip is 3 side buttable
- By using TSV (Through Silicon Via) dead side can be reduced to 0.8 mm in Medipix3 window

Work Packages

- Strawman detector
- Cooling choice
- Module cooling structure and hybridisation
- Link technology
- Planar silicon sensor
- Diamond sensor
- 3d silicon sensor
- Simulation software
- Electronics
- Infrastructure
- R. F. foil

VELOPix Test Beam

- Particle telescope
 - obtained ~2 um track prediction error at the D.U.T.
 - □ High track rate: ~ 1000 tracks/s
 - 1 ns timestamp on tracks.

Resolution vs Angle

5 um at 8 degree, still including 2.3um track prediction error. Red curve is with eta correction.

VELO Environment at High L

=> Danger of thermal run away ! => Silicon must be cooled to -10 °C.

Sensor choices

- Thin planar Silicon: 100-150 μm p on n, or 3D
- Diamond: solves thermal runaway, better radiation resistance

RICH

- RICH simulation
- RICH photon detector evaluation (MAPMT R7600)
- RICH electronics
- RICH mechanics
- TORCH simulation
- TORCH R&D
- TORCH electronics

The Torch

 Idea: Measure Time-of-Flight using Cherenkov radiation in a 1 cm thick quartz block

Principle

- Measure time it takes Cherenkov light to get to photodetectors, this takes into account different Cherenkov angles for the emitted light for different particle species but relies on different flight times over the ~10 m from production point to quartz
- Need photon detectors with good time resolution: Micro-Channel-Plates LHCC July 6, 2010

Calorimeters & Muon

- These detectors currently are readout at 40 MHz
- Electronics plan is already worked out
- Some concerns especially about occupancies in inner part of EM calorimeter in Phase II
- Muon: One new board needed

Tracking

- Outer Tracker occupancies will become unacceptably high in Phase II
- Solutions
 - Enlarge Inner tracker
 - Use faster gas to reduce spillover

Tracking

OT electronics is proceeding nicely Groups working on Fibers for IT Rebuild of IT & TT needs to be guided by current experience in tracking & triggering. Intellectual effort needed here on implications for ghost rate reduction & trigger speed

Trigger

- Many ideas on how to speed up Use VELOPix TT match?
 - This would be helped by reducing material and/or increasing B field between VELO & TT
 - All schemes need detailed simulations

LHCb High P_t Physics

Unique capabilities at high η
 Example: σ(pp→bbX) at 7 TeV

W/Z cross-sections

Precision electoweak physics Expect 10⁶ W's in 1 fb⁻¹

candidate

Hidden Valley Higgs decays

- New heavy Gauge sectors can augment the Standard Model (SM) as well SUSY etc..
- These sectors arise naturally in String theory
- It takes Energy to excite them
- They couple to SM via Z' or heavy particle loops
- Hidden Valley provides new scalars π^{o}_{v} , allowing $H^{o} \rightarrow \pi^{o}_{v} \pi^{o}_{v} \rightarrow bb$, with long lifetimes possible
- From Strassler & Zurek [hep-ph/604261] LHCC July 6, 2010

Mass Resolutions

Expect a few thousand reconstructed decays in 2 fb⁻¹

Conclusions

- We hope to see effects of NP found by Atlas/CMS (CD's) in "flavor" studies in our 1st 6 fb⁻¹
- Upgrading will allow us to precisely measure these effects
- At low ∠ flavor physics can be done at LHCb, ATLAS and CMS. At ∠ >10³⁴ flavor physics will be only possible at the upgraded LHCb
- Complementary to SuperB:
 - LHCb B_S , SuperB τ 's
 - Healthy overlap B^o, B⁻ LHCC July 6, 2010

Upgraded Sensitivities (50 fb ⁻¹)	
Observable	Sensitivity
$CPV(B_s \rightarrow \phi \phi)$	0.024
$CPV(B_d \rightarrow \phi K_s)$	0.027-0.064
$CPV(B_s \rightarrow J/\psi \phi) (2\beta_s)$	0.004
$CPV(B_d \rightarrow J/\psi K_s) (2\beta)$	0.004-0.014
$CPV(B \rightarrow DK)$ (γ)	<1.4 ^o
$CPV(B_s \rightarrow D_sK)$ (γ)	1.4-2.8 ^o
$\mathcal{B}(B_{s} \rightarrow \mu^{+}\mu^{-})$	~15% of SM
$A_{FB}(B \rightarrow K^* \mu^+ \mu^-)$	Zero to ± 0.1 GeV ²
$σ(sin2ψ)(B_s \rightarrow φγ)$	0.03
Charm mixing x' ²	3x10⁻⁵
Charm mixing y'	4x10 ⁻⁴
Charm CP y _{CP}	2x10 ⁻⁴

as

Note that
$$2|M_{12}| = \Delta M = M_H - M_L$$

 $2|\Gamma_{12}|\cos\phi = \Delta\Gamma = \Gamma_L - \Gamma_H$

Another quantity of interest is

$$a_{sl} = \operatorname{Im} \frac{\Gamma_{12}}{M_{12}} = \frac{\left|\Gamma_{12}\right|}{\left|M_{12}\right|} \sin \phi = \frac{\Delta\Gamma}{\Delta M} \tan \phi$$

- Which characterizes CPV in flavor specific B→f. Generally $B^{o} \rightarrow X\ell^{-}\nu$, $\overline{B}^{o} \rightarrow X\ell^{+}\nu$
- Here |A(B→f)|=|A(B→f)|, which is not always true

a_{sl} II

Then
$$a_{sl} = \frac{\Gamma(\overline{B} \to f) - \Gamma(B \to \overline{f})}{\Gamma(\overline{B} \to f) + \Gamma(B \to \overline{f})}$$

- Which is the asymmetry in wrong-sign decays & measures the CP violation in mixing
- As an example take f to be a semileptonic decay such as B_s→D_s⁻μ⁺ν.The measurement is to see an asymmetry between D_s⁺μ⁻ν and D_s⁻ μ⁺ν. Can use other decays.

$$A_{\rm SL} \equiv \frac{\Gamma(b\bar{b} \to \mu^+ \mu^+ X) - \Gamma(b\bar{b} \to \mu^- \mu^- X)}{\Gamma(b\bar{b} \to \mu^+ \mu^+ X) + \Gamma(b\bar{b} \to \mu^- \mu^- X)}$$

Comparison with Super B factory

Possible Separation

Other Possibilities: "Hidden" Gauge Sectors

- Many possible extensions to SM, SUSY, ED, etc...
- Consider here adding a U(1)' Gauge group with a color charge v, useful for generating Electroweak Baryogenisis
 - e. g. : Barger et al [hep-ph/0702001]. Carpenter et al [hep-ph/0607204], Strassler & Zurek [hep-ph/0604261, & 0605193] & many others

Produce new quark(s) U_i via $Z' \rightarrow U U$, fragmentation causes lots of particle production, with some particles containing new $U_1 \& U_2$ with v=0. These scalar particles $\pi_v^{0} \rightarrow$ bb preferentially due to helicity conservation if $2m_{\rm B} < m(\pi_{\rm V}) < m_{\rm WW}$ LHCC July 6, 2010

Torch Simulations

- Smearing of photon propagation time due to the pixellization of photodetector ~ 40 ps
- Would increase to 130 p ^{0-0.2 -0.16} Real of the existing 32×32 pixel layout had to be used instead

- Assuming an intrinsic arrival time measurement resolution per p.e. of 50 ps the total resolution per detected p.e. is 40 ⊕ 50 = 64 ps
 With 50 p e / track this would give 64 /√50 = 9 ps
 - With 50 p.e. / track this would give 64 $/\sqrt{50} = 9$ ps per track, as required

Interaction Trigger

le, 16th June 2010