

A System-on-Chip-based Front-end Electronics Control System for the Phase-2 ATLAS Thin-Gap Chambers (TGC)

Aoto Tanaka (U-Tokyo ICEPP) on behalf of the TGC Electronics Group

2nd System-on-Chip Workshop - CERN 9 Jun. 2021

TGC Electronics System

- Front-End Board (1434 on TGC)
- Send all hit signals to SL boards
 via optical links (8 Gbps/1 lane)
- Sector Logic (SL) (48 in USA15)
- Process muon trigger in the endcap region
- Send LHC clock(40MHz) to the FE Board
- JATHub (148 in VME crate)
- Program front-end FPGAs
- Improve robustness against SEU errors in the front-end FPGAs
- Monitor the LHC clock phase within O(100 ps) distributed to the FE boards

120

9 Jun. 2021

Development of the JATHub

9 Jun. 2021

9 Jun. 2021

Concept of JATHub Module Design

- FPGAs in the ATLAS cavern need to be controlled from USA15
 - Program the FPGAs by JTAG
 - Monitor LHC clock phase on FE Boards
 - Build the robust front-end system
 - Recover the function of the FPGAs, when unrecoverable SEU error occurred
 - Reset and reestablish this link, when Optical-link is unlocked
- → Control hub boards for FPGAs on the FE Board named "JTAG Assistance Hub" ("JATHub") are introduced

3 /20

Design of the JATHub

Control max. 11 FE Boards

through two CAT6 cables for each

- Reuse currently available signal cables
- FE Board: 1434, JATHub: 148
- Equipped with Zynq-7000 SoC as the main driver
- The boards will be housed in the VME crates being used in the pit (6 JATHubs in 1 VME crate)

/20

9 Jun. 2021

2nd SoC Workshop-CERN (A.Tanaka)

Interfaces and Functions of the JATHub

- Opt-Ethernet network with USA15
- Control of max. 11 FPGAs on the FE Boards
 - JTAG access to the FPGAs
 - Recover the FPGAs from unrecoverable SEU errors
 - Monitor LHC clock phase
- Interactive control with the neighboring JATHub
 - JTAG access to the Zynq
 - Recover the Zynq from unrecoverable SEU errors
- Redundant boot system with SD ×2, QSPI
- Behaving as a VME slave module

5 /20

JATHub Final Prototype Board (delivered Feb. 2021)

9 Jun. 2021

Integration Test for the TGC Front-end Electronics Control System

TGC Front-end Control System Integration Test

- Built a testbench (FE Board, SL, JATHub) at KEK
 - Substitution of the SL ATCA blade: Run3 SL
- The list of test items
- ① JTAG control with the infrastructure close to the ATLAS cavern
- 2 Demonstration of the measures against radiation damage
- ③ Calibration of the LHC clock on the FE board

8 /20

Testbench for the Integration Test

9 Jun. 2021

1) JTAG Access to Remote FPGAs and Zynq

- FPGAs and Zynqs in the ATLAS cavern need to be configured remotely by JTAG access
- 3 targets of JTAG access
 - \cdot Program firmware to FPGAs
 - Program files to QSPI flash memory
 - FPGA's QSPI: Configuration file including firmware data
 - · Zynq's QSPI: Boot file
 - Debug firmware logic on Zynq, FPGA
- QSPI programming is the most important for the operation in the cavern, because when a module is reset, it reads the file in QSPI first

1 Implementation of JTAG Access Function

Implemented 2 kinds of JTAG access methods

> Xilinx Virtual Cable (XVC) :

 Access to master JATHub with TCP/IP from Host PC and access to the slave module with JTAG, by running the XVC application in master JATHub (XVC is the TCP/IP based protocol accessing like JTAG)

- Enable to use the functions of Vivado running in a Host PC for remote FPGAs
 - Program FPGA and QSPI
 - Debug firmware logic
 - Integrated Logic Analyzer (ILA)
 - IBERT
- Serial Vector Format (SVF) player :
 - SVF player handles JTAG signals of slave FPGAs, Zynqs by bit-banging by reading SVF file (records JTAG pattern)
 - SVF file stored in SD can be made by Vivado
 - SVF player can program FPGA, QSPI

1 Testing of JTAG Access

- Connected master JATHub and slave module by CAT6 (15~30 m)
 - Optimized the JTAG clock freq. to 1.25 MHz
- Program FPGA, FPGA's QSPI
 - XVC: Succeeded by controlling Vivado running in a Host PC
 - SVF player: Succeeded
 - -> We will use SVF player at the operation in the cavern

to avoid TCP/IP access during the JTAG operation

- Debug firmware logic on Zynq, FPGA
 - XVC: Succeeded by controlling Vivado running in a Host PC
 -> We will use XVC at the operation in the cavern
- → Succeeded to configure remote FPGAs and Zynq *[problem] Failed to program only Zynq's QSPI

12/20

Increase the Accessibility to Zynq flash memory

- Need to program remote Zynq QSPI flash memory to rewrite Zynq's boot file
- Failed to program by JTAG access via Zynq
 - Indirect QSPI programming via XVC failed by unknown reason
 - Vivado doesn't support to make SVF file for the indirect programming of Zynq's QSPI
- Established bypass to program Zynq's QSPI directly using VME path
- Software-level development of the direct access to Zynq's QSPI with this bypass is in progress

3 /20

② Mitigation Scheme for SEU on Slave Modules

- Soft Error Mitigation (SEM) controllers are running on the FPGAs and Zynqs, and automatically recover the most of SEU errors
- Reset signal are triggered by JATHub
- when unrecoverable SEU error is reported by a slave module
- via a robust communication path
- Equipped debouncer IC to reject unwanted short reset signals
- Implemented the recovery path in master JATHub,
 with voting logic at various places of the path
- Tested this recovery function
 - Master JATHub connects with slave JATHub, and slave FE Boards
 - Succeeded to recover the slave modules

14/20

② JATHub Boot System with 2 SDs & QSPI

- Boot Files for Zynq SoC can be divided into (1), (2) (petalinux 2018.3)
 - (1) Initial Boot File (BOOT.BIN) (~0.5 MB), (2) Second Boot File (image.ub, firmware) (~25 MB)
 - (1) Program the same 2 Initial Boot Files ((1-a, (1-b)) into QSPI, attaching offset value for each
 - ② Store the same 2 Second Boot Files (2-a, 2-b) into each SD card(SDO, SD1)
- By default, when CPU is powered on, CPU reads 1-a File with the smallest offset value at first
- By default, after 1)-a File is loaded, CPU reads 2)-a File

2nd SoC Workshop-CERN (A.Tanaka)

15/20

② System of Boot Redundancy on the JATHub

• When CPU fails to read 1-a File

- When the header of the file was damaged
 - \rightarrow CPU will automatically read 1-b File
- When something wrong in the file, except for its header
 - Overwrite a valid 1)-a File from outside
 - \rightarrow CPU will read the valid 1-a File
- When CPU fails to read 2-a File
 - \rightarrow CPU will automatically read 2-b File in SD 1

* Tested this boot redundancy with invalid 1-a and 2-a; Boot system worked correctly

16 /20

③ Calibration of the LHC Clocks on FE Boards

- LHC clock phases on all the FE Boards need to be matched in accuracy of <1 ns
- Due to the different fiber length of SL and FE board, Calibration of the LHC clock on FE board is required
- Procedure of the calibration:
 - SL sends LHC clock to FE Board by optical link
 FPGA recovers LHC clock from 8b/10b protocol
 - 3, JATHub monitors the distributed LHC clock
 - 4, SL controls delay parameters in FPGA to adjust the recovered LHC clock
- $\boldsymbol{\cdot}$ Demonstrated the calibration in the testbench

/ 120

9 Jun. 2021

③ Demonstration of the LHC Clocks Calibration

- Realized to monitor the LHC clocks of FE boards on JATHub at the same time in accuracy of 1/56 ns
- Realized to delay the LHC clocks of 2 FE boards by the SL in accuracy of 1/56 ns
- According to the monitoring result on the JATHub, the delay parameter on the FE board was adjusted by the SL
- The phase adjustment was achieved
- → The clock distribution with fixed latency in accuracy of ~20 ps was successfully performed

8 /20

9 Jun. 2021

Summary

- Designed and developed the JATHub as the center of the Phase-2 ATLAS Muon Trigger front-end control system, satisfying the following requirements
 - Remotely control and monitor ~1500 FPGAs in the ATLAS cavern
 - Ensure the robust operation even in a high radiation area
- \checkmark Almost completed the testing of the JATHub final prototype board
- Almost completed the demonstration of the front-end control system in the testbench
- Preparing for the FDR in Jul. 2021
- Preparing for the PRR in Feb. 2022
- Produce about 160 JATHub mass-production model and install in 2025

Functions of the JATHub	Implementation & Testing
1000BASE-X Opt-Ethernet	Clear
JTAG access to remote slave modules	Clear
Recovery procedures for slave modules	Clear
Monitoring the LHC clk on PS Board	Clear
Redundant boot system	In progress
Behaving as a VME slave module	Clear
, 	Functions of the JATHub 1000BASE-X Opt-Ethernet JTAG access to remote slave modules Recovery procedures for slave modules Monitoring the LHC clk on PS Board Redundant boot system Behaving as a VME slave module

9/20

9 Jun. 2021

[FYI] Current Status of the Phase-2 Endcap SL ATCA Blade

- Phase-2 SL ATCA blade uses Zynq UltraScale+ MPSoC
 - Primary design: Enclustra SoM (Mercury XU5)
- Usage of MPSoC
 - Interface for the ATLAS run control
 - Configuration and monitoring of Virtex UltraScale+ (XCVU13P) on SL
- Phase-2 SL ATCA blade prototype board will be delivered in Autumn 2021
- Demonstration on an evaluation board (XU5 & PE1)
 - Compiled in Petalinux 2019.2
 - Succeeded to build and boot CentOS 7
- Development of firmware to control Virtex FPGA on the SL is in progress

2() /20

Backup

9 Jun. 2021

System of TGC Readout • Trigger Electronics for Phase 2 in Detail

9 Jun. 2021

SEU Counts at PS board in Phase 2

- SEU count test for FPGA at the location of PS board in Run 2(2018) [Link]ATLAS public results
- Peak Luminosity in Phase 2
 - $\rightarrow 7.5 \times 10^{34} cm^{-2} s^{-1}$
- Frequency of SEU in FPGAs of all PS boards in ATLAS cavern

 \rightarrow Approximately 1 time per 10 seconds

 [note] Unless 2 or more SEUs are occurred at the same time in the same FPGA, SEM(Soft Error Mitigation) in FPGA will automatically recover the function of FPGA.

JATHub Design around Zynq SoC

Pin Assignment of JATHub RJ45 Ports

PIN 1

2

3

4

5

6

7

8

PIN 1

2

3

4 5 6

7 8

PIN ASSIGNMENT on RJ45 for PSBoard(i)

PIN	CN4 (A-H), CN5 (A-C)	
1	PSB-TDO+	
2	PSB-TDO-	
3	PSB-TDI+	
4	PSB-TMS-	
5	PSB-TMS+	
6	PSB-TDI-	
7	PSB-TCK+	
8	PSB-TCK-	

PIN	CN4(I-P), CN5(G-I)
1	PSB-RECOVERY-REQUEST-B+!
2	PSB-RECOVERY-REQUEST-B-!
3	PSB-MONITORING+
4	PSB-PRGB-*!
5	PSB-PRGB+*!
6	PSB-MONITORING-
7	/PSB-TRANSCEIVER-RESET+*!
8	/PSB-TRANSCEIVER-RESET-*!

PIN ASSIGNMENT on RJ45 for Legacy SPP Board(ii)

CN5 (F)	PIN	CN5(L)
LGCYSPP-SDA-W+	1	LGCYSPP-TTC-CLK+
LGCYSPP-SDA-W-	2	LGCYSPP-TTC-CLK-
LGCYSPP-SDA-R+	3	LGCYSPP-TTC-BCR+
LGCYSPP-SCL-W-	4	N/A
LGCYSPP-SCL-W+	5	N/A
LGCYSPP-SDA-R-	6	LGCYSPP-TTC-BCR-
LGCYSPP-SCL-R+	7	N/A
LGCYSPP-SCL-R-	8	N/A

PIN ASSIGNMENT on RJ45 to Neighbouring JATHub Board (TX) (iii)

PIN	CN5(D)	PIN	CN5 (J
1	SPP-TDO+	1	SPP-RECOVERY-R
2	SPP-TDO-	2	SPP-RECOVERY-R
3	SPP-TDI+	3	SPP-MONIT
4	SPP-TMS-	4	SPP-PRG
5	SPP-TMS+	5	SPP-PRG
6	SPP-TDI-	6	SPP-MONIT
7	SPP-TCK+	7	/SPP-POR
8	SPP-TCK-	8	/SPP-POR

PIN	CN5 (J)
1	SPP-RECOVERY-REQUEST-B+!
2	SPP-RECOVERY-REQUEST-B-!
3	SPP-MONITORING+
4	SPP-PRGB-*!
5	SPP-PRGB+*!
6	SPP-MONITORING-
7	/SPP-PORB+*!
8	/SPP-PORB-*!

PIN ASSIGNMENT on RJ45 from Neighbouring JATHub Board (RX) (iv)

CN5(E)	PIN	CN5 (K)
SPP-TDO+	1	SPP-RECOVERY-REQUEST-B+!
SPP-TDO-	2	SPP-RECOVERY-REQUEST-B-!
SPP-TDI+	3	SPP-MONITORING+
SPP-TMS-	4	SPP-PRGB-!
SPP-TMS+	5	SPP-PRGB+!
SPP-TDI-	6	SPP-MONITORING-
SPP-TCK+	7	/SPP-PORB+!
SPP-TCK-	8	/SPP-PORB-!

*: Program b singals and the reset signals are in high impedance when the Zyng isn't configurated or the JATHub isn't powered on(v) !:Negative Logic (Active Low) (vi)

All signals driven by transmitter DS90LV047ATMTCX/NOPB have fail safe function; default high impedance(vii)

All signals received by receiver SN65LVDT348PWR have fail safe function; default high(viii)

PORT ASSIGNMENT of RJ45 Multi-Ports(ix)

CN4(5569264-1) 2*8 RIGHT side

9 Jun. 2021

1000Base-X Ethernet Test

- Implemented PHY in FPGA part of Zynq, and connected CPU and GTX transceiver (which connects to SFP module)
 - \rightarrow Enable to communicate with Zynq by optical cables
- Tested Opt-Ethernet with the JATHub prototype
 - Connected Host PC and JATHub with optical cable
 - Succeeded to establish ethernet network
 - Successfully sent PING and SSH

2 Stable handling of the reset signal

- Reset signal needs to be "1" in idle state while master JATHub handles reset signals(active-low) of slave modules
- LVDS receiver IC issued short "0" when input signal became high impedance ("Z") by Power-on-Reset of the master JATHub
 - → Debouncer IC of the slave module rejects unwanted short "0" reset signals (less than 80 ms)

I/O signals of debouncer IC (slave)

I/O signals of LVDS receiver IC (slave)

③ Monitoring LHC Clock Phase of FE Board

- need to synchronize LHC clock phases
 on all the FE Boards in the cavern with less than 1 ns accuracy
- Implemented firmware to monitor the LHC clock with 1/56 ns accuracy
 - Read TTC clock from PS Board at rising edge of reference TTC clock
 - Shift phase of the reference TTC clock by 1/56ns and read the clock from PS Board again (repeat until ref. clk phase shifted by 25ns)
 - Enable to read max. 11 TTC clocks from PS Boards at the same time

 \rightarrow Succeeded to monitor TTC clock

Ethernet Network