

Waveform Digitizing and Processing Front-end Microelectronics for large Experiments

June 8, 2021 Isar Mostafanezhad, Ph.D. Founder and CEO at Nalu Scientific LLC

Work partially funded by US DOE SBIR Grants: DE-SC0015231, DE-SC0017833, DE-SC0020457

NALU SCIENTIFIC - Approved for public release. Copyright © 2021 Nalu Scientific LLC. All rights reserved. CERN SoC Workshop June 8, 2021.

ABOUT NALU SCIENTIFIC

Fast Growing Startup in Honolulu, Hawai'i

Located at the Manoa Innovation Center Over \$11M in committed funding, 18 staff members Access to advanced design tools Rapid prototyping and testing lab

Scientific Expertise

HEP/NP particle detection and tracking Radiation detection Readout electronics for Nuclear & Particle Physics detectors

Technical Expertise

Analog + digital System-on-Chip (SoC) Field Programmable Gate Arrays (FPGA) Complex multi-layer Printed Circuit Boards (PCBs)

Nalu = 'wave' in native Hawaiian language

NALU SCIENTIFIC - Approved for public release. Copyright © 2021 Nalu Scientific LLC. All rights reserved. CERN SoC Workshop June 8, 2021.

Funding, Collaboration and Workforce Development

NALU SCIENTIFIC - Approved for public release. Copyright © 2021 Nalu Scientific LLC. All rights reserved. CERN SoC Workshop June 8, 2021.

3

WAVEFORM DIGITIZER SoCs FOR PRECISE TIME OF FLIGHT ESTIMATION

<u>3a. Main application:</u>

- NP/HEP experiments
- Astro particle physics

3b. Other applications:

- Beam Diagnostics
- Plasma/fusion diagnostics
- Lidar
- PET imaging

1. Front-end Chips:

- Event based digitizer+DSP
- 4-32 channel scope on chip
- 1-15 Gsa/s, 12 bit res.
- Low SWaP-C
- User friendly: FW/SW tools

2. Integration:

- SiPM
- M/A PMTs
- LAPPD
- Detector arrays

NALU SCIENTIFIC - Approved for public release. Copyright © 2021 Nalu Scientific LLC. All rights reserved. CERN SoC Workshop June 8, 2021.

HISTORY - BELLE II

Belle II Upgrade is a 26+ Country, 900 Member Collaboration

2015

2018

Nalu Staff designed and implemented front-end electronics and FW for KLM (muon system) and iTOP (Cerenkov-based PID) sub-detectors.

Belle II: e+ e- experiment at 40x luminosity of Belle -> Detector needs to operate at severe beam background. L1 trigger at 30 kHz

HOW DOES NP/HEP EXPERIMENT WORK?

LESSON TWO

Needs:

- Radiation hard
- High performance
- Accommodate long trigger delay
- Low cost, low power
- User friendly

Solution: New System-on-Chip Integrated Circuit

Opportunity: Not many commercial options available

Proposed Solution:

Chip level integration of switched capacitor array (analog) with digital processing.

ASIC-SoC: AARDVARC

Advanced ASoC Rapid Digitizer, Variable Adaptive Readout Chip

Current SoC-ASIC Projects

Project	Sampling Frequency (GHz)	Input BW (GHz)	Buffer Length (Samples)	Number of Channels	Timing Resolution (ps)	Available Date
ASoC	3-5	0.8	16k	4	35	Rev 3 avail
HDSoC	1-3	0.6	2k	64	80-120	May'21
AARDVARC	8-14	2.5	32k	4	4	Rev 3 avail
AODS	1-2	1	16k	1-4	100-200	Rev 1 avail
STRAWZ	5	2	2k	64	10	Dec'22

- ASoC: Analog to digital converter System-on-Chip
- HDSoC: SiPM specialized readout chip with bias and control
- AARDVARC: Variable rate readout chip for fast timing and low deadtime
- AODS: Low density digitizer with High Dynamic Range (HDR) option
- STRAWZ: Streaming Autonomous Waveform-digitizer with Zero-suppression

Work funded by DOE SBIRs. Chips designed using commercial EDA tools. University of Hawaii as subcontractor.

NALU SCIENTIFIC - Approved for public release. Copyright © 2021 Nalu Scientific LLC. All rights reserved. CERN SoC Workshop June 8, 2021.

AARDVARC VI

ACOS V1 BV2

AS-CVI

ASoC V3 DESIGN DETAILS

Compact, high performance waveform digitizer

- High performance digitizer: 3+ Gsa/s
- Highly integrated
- Commercially available, low cost, patented design
- 5mm x 5mm die size

Parameter	Spec
Sample rate	2.4-3.6GSa/s
Number of Channels	4
Sampling Depth	16kSa/channel
Signal Range	0-2.5V
Number of ADC bits	12 bits
Supply Voltage	2.5V
RMS noise	~1.5 mV
Digital Clock frequency	25MHz
Timing resolution	<25ps (see below for details)
Power	120mW/channel
Analog Bandwidth	850MHz
Serial interface	Up to 500 Mb/s***

- Calibration memory access
- PLL on chip
- Isolated analog/digital voltage rings
- Serial interface
- Self triggering
- Completed DOE Phase II SBIR
 - Eval cards avail
 - Custom boards under dev

IEEE NSS 2021

NaluScope Common Software and GUI

- Windows/Linux PC •
- **USB** interface •
- GUI, CLI interfaces •
- Common to all Nalu chips •
- DAQ configuration •
- Data exploration, visualization, • curation and storage

Capture

Readout channels 0 1 2

Mode Limit events:

> Trigge Source

Interval

Read window Read windows Lookback

Write after trig Trigger values

> 0 HD-0 1000 CH 2

013

AARDVARC V3 DESIGN DETAILS

Compact, high performance waveform digitizer

- High performance digitizer: 10+ Gsa/s
- Highly integrated
- Commercially available, low cost, patented design
- 5mm x 5mm die size

Parameter	Spec
Sampling Rate	10-14 GSa/s
ABW	> 1GHz
Depth	32k Sa
Trigger Buffer	~3 us*
Deadtime	0**
Channels	4
Supply/Range	1.2V/0.3-0.9V
ADC bits	12
Timing accuracy	<5ps (@13 GSa/s)
Technology	130 nm CMOS
Power	80mW/ch

- On chip calibration
- On chip PLL
- On chip feature extraction
- Isolated analog/digital voltage rings
- Serial interface
- Funded DOE Phase IIA SBIR

IEEE NSS 2021

AARDVARC v3

Simulation of deadtime-less operation

Banking system:

- Storage array flexibly partitioned
- Handles multiple hits
- Reduce deadtime

Trigger Probability (per window) Simulation showing 0 deadtime growing asymptotically with the number of banks for average Poisson rates below maximum rate. Trigger probability = raw hit per channel.

NALU SCIENTIFIC - APPROVED FOR PUBLIC RELEASE. Copyright © 2021 Nalu Scientific LLC. All rights reserved. Presented at 2020 IEEE NSS-MIC

 Logic level simulations with real estimates for digitization/readout (full 4 channels readout, Rate of 125kHz)

N-20-014, Wed. Nov 4, 2020 2pm EDT

12

HDSoC VI DESIGN DETAILS

High density waveform digitizer with dead-timeless readout

- High Density: 64 channels
- Highly integrated, SiPM gain + bias
- Commercially available, low cost CMOS

Parameter	Spec
Sampling Rate	1-2 GSa/s
ABW	> 600MHz
Depth	2k Sa
Trigger Buffer	~3 us*
Deadtime	0**
Channels	64
Supply/Range	2.5
ADC bits	12
Timing accuracy	80-120ps
Technology	250 nm CMOS
Power	TBD

- On chip calibration
- Serial interface
- On chip feature extraction
- Virtually dead-timeless
- 32 ch proto chip fabricated
- Phase II SBIR awaiting award
- Next steps: packaging and eval

HDSoC v1 die shot

** Simulated Up to 240 KHz / ch with single serial link using on-chip self trigger and feature extraction. Up to 400 kHz / ch with additional serial links.

Integration efforts - HIPeR

AARDVARC based readout

Incom's Gen 1 LAPPD

Integration and testing (UH)

Nalu Scientific Phase I SBIR in collaboration with Incom and University of Hawaii.

ALU SCIENTIFIC - Approved for public release. Copyright © 2021 Nalu Scientific LLC. All rights reserved. CERN SoC Workshop June 8, 2021.

Dead-timeless operation

• Multi-bank switched capacitor array:

- Older versions of chips (ASoC, AARDVARC)
- Long internal analog memory (storage)
- Capable of self triggering
- Suitable for long trigger delays (3-5 us)
- Large die size
- ASoC V3 may be able to readout up to ~100 kHz of input rate without deadtime (estimated).

• Virtual analog memory:

- New lines of chips (HDSoC, STRAWZ)
- Unlimited virtual depth (up to a certain rate)
- Small die size, lower power
- Dead-timeless up to a certain rate, designed with self-triggering in mind
- Suitable for streaming mode readout
- Feature extraction and on-chip data reduction
- Estimated 240-400 kHz rate handling

How can Nalu contribute?

Project	Frequency (GHz)	Buffer Length	Channels	Timing Res. (ps)	Rate handling	TRL	Suitable for	Detectors
ASoC	3-5	16k	4	35	~100kHz	High	Low density, precision timing, flexible board integration	
HDSoC	1-3	2k	64	80-120	~240, 400 kHz	rev1	High density SiPM, MA-PMT	
AARDVARC	8-14	32k	4	4	~125kHz	Med	Precision timing, low density	
STRAWZ	5	2k	64	10	~500 kHz	Low	High density, precision timing	
AODS	1-2	16k	1-4	100-200		Med	High dynamic range	

- ASIC Tech shovel ready and likely to around for next 10 years
- Knowledgebase created through significant investment from DOE SBIR program.
- **Experiment in mind** through high levels of integration: clock, calibration, memory
- Commercial grade design tools used to create commercial chips
- **Teaming** with scientists on EIC-PID readout, white papers, etc
- Strategic partnerships with system integrators to connect chips to DAQs
- Working relationships with U. of Hawaii and several National Labs

Summary

- Nalu Scientific portfolio of FE/digitizer electronics
 - Specialized for NP/HEP experiment readout
 - High integration (clock, memory, calibration)
 - Packaged chips and eval cards available
 - Additional testing under way including irradiation

• Expertise:

- NP/HEP electronics/FW development
- Advanced mixed signal ASIC design
- A variety of detector electronics design

• Funding:

- <u>SBIRs:</u> covers costly chip development
- <u>Trade studies:</u> initial assessment
- <u>Custom design contracts:</u> Implementing new packaging and PCB designs
- Next steps:
 - Continue chip+PCB development
 - Continue engagement with experiments in order to tailor the designs to evolving experiment needs
 - New integration efforts under way.
 - Eval boards available for testing

US Department of Energy Office of Science

Hawaii Technology Development Corporation (HTDC)

University of Hawai'i at Manoa Department of Physics

Backup