
Zynq US+ MPSoC in the gFEX
Hardware Trigger in ATLAS

June 8th, 2021
SoC Workshop

Emily Smith
gFEX Team

1

Outline

● gFEX (global Feature EXtractor) Introduction

● Operating System Workflow

● Zynq SoC Monitoring and Control

● Processing System (PS) / Programmable Logic (PL) Interfaces (PYNQ)

2

ATLAS Hardware Calorimeter Trigger for LHC Run 3

3

ATLAS Hardware Calorimeter Trigger for LHC Run 3

4

gFEX Hardware Design

● Entire calorimeter read out on one board for
calculating global observables such as
large-radius jets, MET, and pile-up
estimation for triggers

● 3 Ultrascale+ (VU9P) processor FPGAs
● Zynq Ultrascale+ MPSoC

(ZU19EG) for control and
additional processes

5

Zynq+ MPSoC

Virtex
Ultrascale+

gFEX Zynq SoC Usage

real time
path

read out
path

6

● Zynq also provides real-time data processing
functionality for global MET TOBs

Zynq US+ MPSoC in the real time path

7

real
time
path

read
out

path

pFPGA ⇄ zFPGA connection is GTH/GTY
 UltraScale+ GTH (16.3Gb/s)
UltraScale+ GTY (32.75Gb/s)

gFEX Custom Operating System

● Custom OS developed with Yocto/Openembedded build engine and bitbake
● meta-l1calo layer is where the “custom” design is done (link)
● Originally used open-source yocto releases (rocko, sumo, zeus etc) but have now

switched to slightly less open source yocto-manifests from Xilinx (rel-v2020.1,
rel-v2020.2)

● Yocto-manifests benefits:
○ easier firmware integration: can pass in XSA file

from firmware development to OS build
○ easier updating to newest Vivado
○ boot files built with OS (instead of externally with

Vivado)
● CI on OS build in meta-l1calo repo
● Looking into the addition of the XVC

(Xilinx Virtual Cable)
● Plans to investigate CentOS as well when time

8

https://github.com/kratsg/meta-l1calo
https://github.com/Xilinx/yocto-manifests
https://gitlab.cern.ch/atlas-l1calo/gfex/meta-l1calo/-/tree/mh-dev/ci-xsa-platform

gFEX Zynq SoC: Monitoring and Control

● Zynq primary task is monitoring and control from L1Calo central software and
monitoring from DCS, also interacts with IPMC (Intelligent Platform
Management Controller)
○ via IPBus packets
○ CERN v4 IPMC monitoring
○ DCS hardware sensor monitoring

● Zynq also receives algorithm
output, does minimal processing,
and then sends data downstream
○ Offers potential for additional

processing here at a lower rate
than that required by the real-time
path (trigger path)

9

IPBus Control and Monitoring: Ironman

● One of the greatest advantages of the Zynq SoC: performs many functions
that were previously required by the firmware, but are much easier to handle
in software

● Using custom python module Ironman we can receive and process IPBus
packets, and send response packets
○ Extremely flexible,

can be used in
many scenarios

○ Much easier to
implement than a
firmware based
solution

10

https://github.com/kratsg/ironman

gFEX IPMC - CERN v4

● IPMC = Intelligent Platform
Management Controller

● Interface between board &
ATCA shelf it’s installed in

● Updating from the LAPP IPMC → CERN IPMC
● Temperature sensors on the board are read, the maximums found for different

sensor types, and these values sent to the programmable logic (PL) using the
GPIO. Then the IPMC can access the GPIO over the SPI Bus.

● Required an OS update with a new device tree entry for the GPIO

11

IPMC
SPI Primary

SPI
secondary

Register

gFEX Detector Control Systems (DCS) Monitoring

● On-board OPC UA server generated with a quasar framework (link)
● Developed and integrated into the Yocto OS build

12

https://gitlab.cern.ch/atlas-dcs-opcua-servers/OpcUaGFexServer

gFEX Detector Control Systems (DCS) Monitoring

● Imported into python using the quasar Poverty python module
● Sensor values accessed over I2C using the periphery python module
● A script which runs on boot will query the I2C for each sensor we’re interested

in and write the results to a .json file, such that other processes can access
the value there whenever needed (necessitated by serial access nature of
I2C).

13

https://pypi.org/project/python-periphery/

Zynq SoC PS - PL Interfaces

● Have used AXI-FIFO interfaces between Zynq FPGA and other FPGAs on

gFEX
● Moving towards the use of AXI-DMA, “AXI DMA provides high-bandwidth

direct memory access between memory and AXI4-Stream target peripherals”
● Much quicker transfer of data between

FPGAs and between PS and PL on
the Zynq

● Implementing the software driver side
using PYNQ

14

http://xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
http://xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf

PYNQ with the Zynq MPSoC

● PYNQ = Python Productivity for Zynq
● provides a Python interface which loads and processes bitstreams to create

an API type reference to
firmware objects, referred
to as “overlays”

● Very nice way to utilize
the AXI DMA setup as
PYNQ already has
DMA libraries

● Resulting code needed is
extremely simple!

15

https://pynq.readthedocs.io/en/v2.6.1/
https://github.com/Xilinx/PYNQ/blob/master/pynq/lib/dma.py

Conclusions and Future Work

● The Zynq MPSoC is an extremely important
component of gFEX!

● Yocto OS allows for many tasks to be done more
easily and efficiently in software

● Used in all types of monitoring and control of the
board

● PYNQ provides a large number of libraries to help
interact with the firmware from the PS

● Zynq could still do more - still thinking and trying
different things!

16

Backup

17

PYNQ DMA Code

18

