gFEX yatas (&)

NS

Zynq US+ MPSoC in the gFEX
Hardware Trigger in ATLAS

June 8", 2021
SoC Workshop
Emily Smith
gFEX Team

4 ;" "
Q 2 x 3
o ;b
. " ;" " .
B
I
"
e '
> 4 IR
o %
' ; e
e x
SO R ;"
L et
IR 2
30K -
1 ;"
>
b I
x X i
b 20
n ' &
" b &S
" ., X 4
;"
' s
o
R <
% <
X n %
. o b
% e
. o ;"
x X "o
' ;4
x . o
PO
;"
x " X
b L
n
= LU
b
b

PN
.

e Zynqg SoC Momtormgaﬁé? jaiide xr‘

et e’

LN e

e Processing System (PS) / Programmable Logic (PL) Interfaces (PYNQ)

ATLAS Hardware Calorimeter Trigger for LHC Run 3

Compute
Latency

1 kHz
1 MB/evt

ATLAS Hardware Calorimeter Trigger for LHC Run 3

Compute
Latency

-

< MuCTPI

L1Calo

| Electron
Feature
| Extractor

owers | Fiber [Jet s

Optical =R+ Feature
lant Extractor

QL Global
Feature

— Extractor

219 1 Hub|™ | Hub i
3 23 |Rop| | [RoDIF

A
3
*

gFEX Hardware Design Ultrascale+

Base 16nm FPGA Platform PCle Hard IP

VII"[eX (GTY. DDR4, URAM, CMAC) with CCIX TL

a1y
A PN

| Hard Memory Controller '".\ 2

4GB

Entire calorimeter read out on one board for

calculating global observables such as oot Y e
large-radius jets, MET, and pile-up
estimation for triggers

3 Ultrascale+ (VU9P) processor FP
Zynq Ultrascale+ MPSoC =~
(ZU19EG) for control and
additional processes

Zyng+ MPSoC

gFEX Zyng SoC Usage

40 DATA + 8 CLK
Calorimeter 40 DATA + 8 CLK Calorimeter
== 100 MGT = > <<= 100 MGT ==
«<:24MGT === FPGA-A | __ 24 MGT = >
L1Topo L1Topo
5 pFPGAC
yng MPSoC- !
74 : T 1F T T e
12 MGT >
12 MGT == -
FELIX
'

4 MGT

— () MGT s—-

— 21 DATA + 2 CLK >

°

FPGA-C h
Calorimeter == 100 MGT = 3» =24 MGT === L1Topo

<——— Inter-FPGA Connections (DDR)
<= |nter-FPGA Connections (MGT)
< === External Connections (MGT)

Zynq US+ MPSOC In the real tlme path pFPGA 2 zFPGA connection is GTH/GTY

e Zyng also provides real-time data processing
functionality for global MET TOBs

40 DATA + 8 CLK

Calorimeter SODATA L8 CLI Calorimeter
== 100 MGT = > l<= 100 MGT ==
<:24MGT ==

% x7 == 24 MGT=3>
L1Topo S L1Topo
776>
65

” N>Zynq MPSoC

Calorimeter == 100 MGT =
<—— Inter-FPGA Connections (DDR)

<= Inter-FPGA Connections (MGT)
< === External Connections (MGT)

pFPGA Kernel Mux

Readout

Interface Type
= Commercial or Parallel
= ATLAS Standard
—— AXI Memory Mapped (LP)
~— AXI Stream (HP)
Serial (GTH/Y)
—— Parallel (SelectlO)

UltraScale+ GTH (16.3Gb/s)
UltraScale+ GTY (32.75Gb/s)

PFGPA A

Run Ctrl W
Playback
Topo

Custom OS developed with Yocto/Openembedded build engine and bitbake
meta-l1calo layer is where the “custom” design is done (link)

Originally used open-source yocto releases (rocko, sumo, zeus etc) but have now
switched to slightly less open source yocto-manifests from Xilinx (rel-v2020.1,
rel-v2020.2)

Yocto-manifests benefits:
o easier firmware integration: can pass in XSA file
from firmware development to OS build

Xilinx Release Branch Yocto Yocto Linux Kernel
Codename Release

o easier updating to newest Vivado il o il B i
o boot files built with OS (instead of externally with Rl deus 30 54
Vivado) rel-v2020.2
Cl on OS build in meta-l1calo repo rel-v2019.2
Looking into the addition of the XVC rel-v2019.1
(Xilinx Virtual Cable) rel-v2018.3

Plans to investigate CentOS as well when time rel-v2018.2

rel-v2018.1

https://github.com/kratsg/meta-l1calo
https://github.com/Xilinx/yocto-manifests
https://gitlab.cern.ch/atlas-l1calo/gfex/meta-l1calo/-/tree/mh-dev/ci-xsa-platform

Zynq primary task is monitoring and control from L1Calo central software and
monitoring from DCS, also interacts with IPMC (Intelligent Platform
Management Controller)

o via IPBus packets rErE 4 Athona.
o CERN v4 IPMC monitoring A= apseries parttion

o DCS hardware sensor monitoring
Zynq also receives algorithm
output, does minimal processing,

O

Athena
Tier0
) 5

and then sends data downstream AV .
i it i Components

o Offers pptenhal for additional T o oo (FEXZyna)
processing here at a lower rate — 3 SWROD

. 4 : 4. Athena artition :

than that required by the real-time - SAhenaTierd

: 6. Information Service

path (trigger path)

e One of the greatest advantages of the Zynq SoC: performs many functions
that were previously required by the firmware, but are much easier to handle
in software

e Using custom python module Ironman we can receive and process |IPBus
packets, and send response packets

o Extremely flexible,
can be used in
many scenarios

o Much easier to
implement than a
firmware based
solution

ProGrRAMMABLE Locic

Send IPBus Comman d

[UDP, TCP/IP]

PROCESSING SYSTEM

https://github.com/kratsg/ironman

SF :' N
-
IPMC
SPI Primary

IPMC = Intelligent Platform
Management Controller
Interface between board &
ATCA shelf it’s installed in
Updating from the LAPP IPMC — CERN IPMC

Temperature sensors on the board are read, the maximums found for different
sensor types, and these values sent to the programmable logic (PL) using the
GPIO.Then the IPMC can access the GPIO over the SP| Bus|

Required an OS update with a new device tree entry for the GPIO

11

On-board OPC UA server generated with a quasar framework (link)
Developed and integrated into the Yocto OS build

FAN TRAY 2

shifter | Expert

ATCA Fan Tray
Fan Tray Inf
posuctname: (I
socumver: (I
e asress: ([
present
neattry

No panel available!

Add panel within panels/fwAtlasSecondaryPanels
for: LV1_GFEX_ATCA

Sl snode
Lv1_GFEX_ATC Sobj

Low Warning
316

~PFPGA A

High Fatal
3.60

PFPGA C

~Power_Modules_Zynq

EBHEEETE

OFEX Front Panel

Power Good. Clock_Generator Zynq_heartbeat. Temp. Alert

()

12

https://gitlab.cern.ch/atlas-dcs-opcua-servers/OpcUaGFexServer

Imported into python using the quasar Poverty python module

Sensor values accessed over 12C using the periphery python module

A script which runs on boot will query the I12C for each sensor we're interested
in and write the results to a .json file, such that other processes can access
the value there whenever needed (necessitated by serial access nature of

12C).

12C MUX

TCA9%17B
uulo

IPMC IPMC_M_I2C_BUS:

(K

https://pypi.org/project/python-periphery/

Have used AXI-FIFO interfaces between Zynq FPGA and other FPGAs on
gFEX

Moving towards the use of AXI-DMA, “AXI DMA provides high-bandwidth
direct memory access between memory and AXl4-Stream target peripherals”
Much quicker transfer of data between

FPGAs and between PS and PL on
the Zynq

Implementing the software driver side
using PYNQ

AXI_memory mapped

Loopback [+

AXI_stream

AX1 DMA connections (AXI_Lite, AXI_MM, AXI_Stream)

http://xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
http://xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf

PYNQ = Python Productivity for Zynq
provides a Python interface which loads and processes bitstreams to create
an API type reference to

firmware objects, referred — -

to as “overlays” o / I:L

Very nice way to utilize Koy Pyinon S num:”" “°‘e*’°°:kn_leam: -
the AXI DMA setup as p— .
PYNQ already has s

DMA libraries —— o RS TSN VR (Wosto 20
Resulting code needed is - HKemel L [devety | [sysgpio | [uio | [devmem] ik
extremely simple! e

I="'
PYNQ Overlays

'I=
PYNQ IPs

15

https://pynq.readthedocs.io/en/v2.6.1/
https://github.com/Xilinx/PYNQ/blob/master/pynq/lib/dma.py

Conclusions and Future Work

e The Zyng MPSoC is an extremely important
component of gFEX!

e Yocto OS allows for many tasks to be done more
easily and efficiently in software

e Used in all types of monitoring and control of the
board

e PYNQ provides a large number of libraries to help
interact with the firmware from the PS

e Zynq could still do more - still thinking and trying
different things!

16

XX
’ 4
b 4 ,
A b 4
X
ereieereiiee
> ... > X

17

In [10]:

import numpy as np
from pynq import allocate
from pynq import Overlay

overlay = Overlay('/home/xilinx/jupyter_notebooks/Loopback/AXI_DMA.bit")
dma = overlay.axi_dma_©

input_buffer = allocate(shape=(8,), dtype=np.uint32)
output_buffer = allocate(shape=(8,), dtype=np.uint32)

for i in range(8):
input_buffer[i] = i

for i in range(8):
print("The Array is: ", input_buffer[i])

dma.sendchannel.transfer(input_buffer)

dma.recvchannel.transfer(output_buffer)

status = (dma.sendchannel._mmio.read(dma.sendchannel._offset + 4) & ©X01)
while(status != 1):
status = (dma.sendchannel._mmio.read(dma.sendchannel._offset + 4) & 0X01)

status = (dma.recvchannel._mmio.read(dma.recvchannel._offset + 4) & 0X01)

while(status != 1):
status = (dma.recvchannel._mmio.read(dma.recvchannel._offset + 4) & 0X01)

print("DMA transfer success..\n");

DMA transfer success..

18

