System-on-Chip in Accelerators and Technology Sector

System On Chip Workshop, 7-11 June 21, CERN Mamta Shukla, BE-CEM-EDL

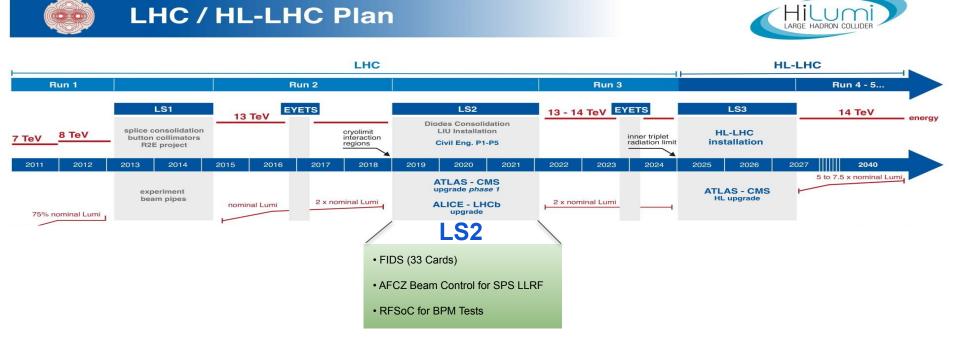
Acknowledgements: D.Bett, K. Blantos, A. Boccardi, D.Cobas, G.Daniluk, I.Degl'Innocenti, E.Gousiou,G.Hagmann, M.Lipinski, P. Peronnard, H.Sandberg, J.Serrano, A.Spierer, J.Storey, F.Vaga, T.Wlostowski (CERN) P. Jansweijer(NIKHEF)

Outline

- SoC in Accelerator and Technology Sector
- □ SoC based Projects in A&T Sector
 - White Rabbit
 - Switch v4
 - Nodes SPEC7, SPEXI7
 - Fast Interlock Detection System
 - Distributed I/O Tier
 - Beam Control System for SPS LLRF
 - HL-Beam Position Monitoring
 - Beam Gas Ionization
- Requirements

□ Efforts

Outline

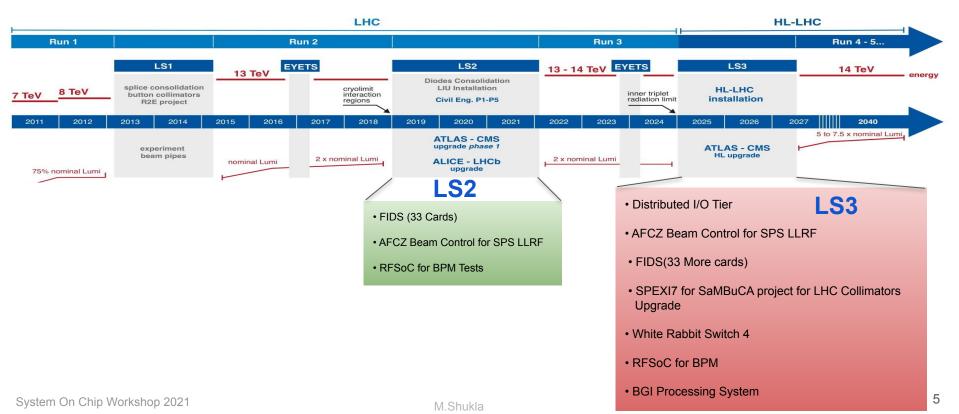

SoC in Accelerator and Technology Sector

- □ SoC based Projects in A&T Sector
 - White Rabbit
 - Switch v4
 - Nodes SPEC7, SPEXI7
 - Fast Interlock Detection System
 - Distributed I/O Tier
 - Beam Control System for SPS LLRF
 - HL-Beam Position Monitoring
 - Beam Gas Ionization

Requirements

□ Efforts

Overview



Overview

LHC / HL-LHC Plan

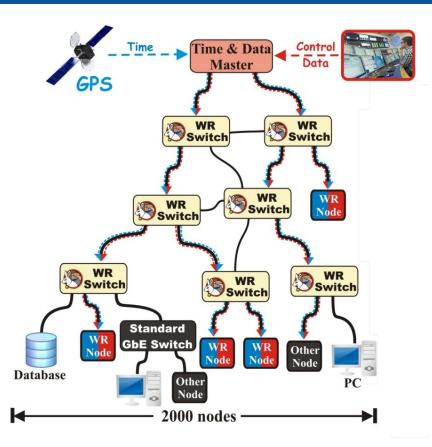
Outline

SoC in Accelerator and Technology Sector

□ SoC based Projects in A&T Sector

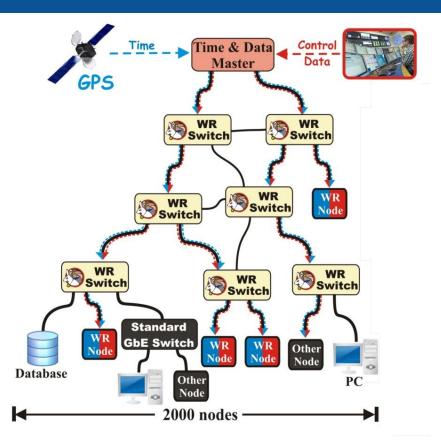
- White Rabbit
 - Switch v4

Nodes - SPEC7, SPEXI7


- Fast Interlock Detection System
- Distributed I/O Tier
- Beam Control System for SPS LLRF
- HL-Beam Position Monitoring
- Beam Gas Ionization

Requirements

Efforts


- CERN and GSI initiative for control and timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)

Courtesy: M.Lipinski, J.Serrano, G.Daniluk, T.Wlostowski

- CERN and GSI initiative for control and timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to provide
 - Sub-ns synchronisation (included in IEEE 1588)
 - Deterministic data transfer

Courtesy: M.Lipinski, J.Serrano, G.Daniluk, T.Wlostowski

- CERN and GSI initiative for control and timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to provide
 - Sub-ns synchronisation (included in IEEE 1588)
 - Deterministic data transfer
- Open source and commercially available
- Many applications worldwide

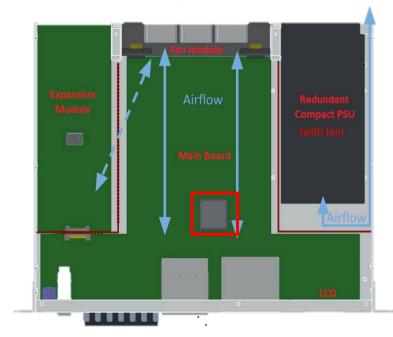
che Telecommunication for DM High Accuracy Time Dissemination

https://ohwr.org/project/white-rabbit/wikis/home

- CERN and GSI initiative for control and timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to provide
 - Sub-ns synchronisation (included in IEEE 1588)
 - Deterministic data transfer
- Open source and commercially available
- Many applications worldwide

Introduction to White Rabbit - M.Lipinski, G.Daniluk, BE-Seminar, 2019

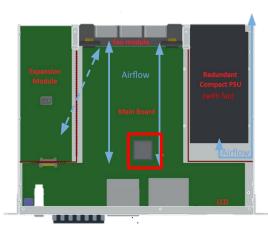
https://ohwr.org/project/white-rabbit/wikis/home



M.Shukla

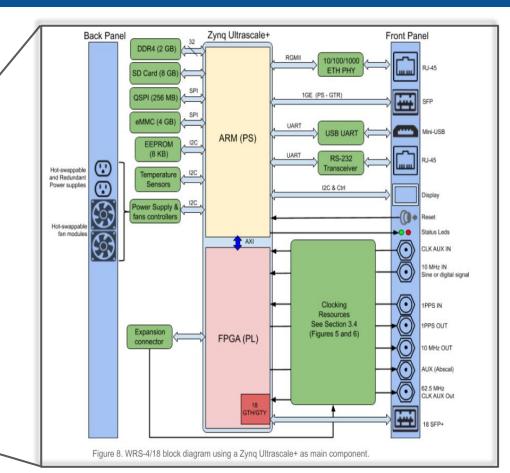
White Rabbit Switch

- It is a fully compliant Ethernet Switch that provides high accuracy synchronization and deterministic communication in an Ethernet-based network.
- Choice of SoC:
 - Advances WR technology
 - Newest Xilinx MPSoC
 - Sufficient FPGA resources for new features
 - Support for 10 Gbps and higher speeds
 - Extensible to accommodate new applications and improvements
 - Ensures high reliability
 - Redundant elements
 - Enough FPGA resources to implement reliability features


https://ohwr.org/project/wr-switch-hw-v4/wikis/home

Courtesy: M.Lipinski

White Rabbit Switch


- Zynq Ultrascale+ SoC with support for up to 32.75 Gbps
- **PL**: SFP interface, White Rabbit PTP core supports upto 24 ports
- **PS**:
 - SNMP and diagnostics
 - Embedded Linux

White Rabbit Switch Architecture

- Zynq Ultrascale+ SoC with support for up to 32.75 Gbps
- **PL**: SFP interface, White Rabbit PTP core supports upto 24 ports
- **PS**:
 - Embedded Linux
 - SNMP and diagnostics

Courtesy: M.Lipinski

White Rabbit Nodes

Different form factors (**PXIe, PCIe, CompactPCI**) and SoC on the nodes; hosted in FECs

Simple PXI Express Carrier 7(SPEXI7)

Simple PCI Express Carrier 7 (SPEC7)

Simple PXI Express Carrier 7 (SPEXI7)

- Zynq Ultrascale+ PXIe FMC Carrier
- Developed in Sensors Acquisition and Motion Control framework
- PL:
 - White Rabbit PTP core and application specific core

PS:

- PXIe core for enumeration within 100ms
- Reconfiguration of FPGA fabric
- Applications:
 - Follow up candidate for SPEC [In study]
 - LHC Collimators Upgrade
 - Mechatronics Application

Courtesy: Paul Peronnard, BE-CEM

Simple PXI Express Carrier 7 (SPEXI7)

FRAS Motorized Axes Control System, P.Peronnard

Courtesy: Paul Peronnard, BE-CEM

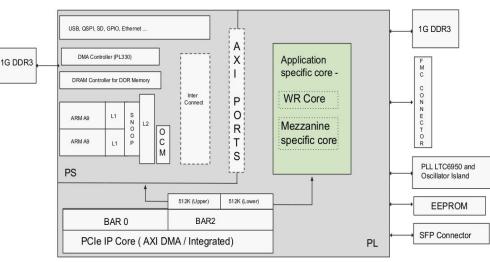
- Zynq Ultrascale+ PXIe FMC Carrier
- Developed in Sensors Acquisition and Motion Control framework
- PL:
 - White Rabbit PTP core and application specific core

PS:

- PXIe core for enumeration within 100ms
- Reconfiguration of FPGA fabric
- Applications:
 - Follow up candidate for SPEC [In study]
 - LHC Collimators Upgrade
 - Mechatronics Application

https://ohwr.org/project/spexi7u/wikis/home

Simple PCI Express Carrier 7 (SPEC7)


- Zynq 7000 Family SoC (XC7Z030-1FBG676C) and Dual-Core ARM Cortex A9 processor
- It is optimised for low jitter for White Rabbit deployment with provision of specific clock island of PLLs
- PL:
 - White Rabbit PTP core and application specific core
 - Holds Golden Image for 100ms PCIe enumeration

PS:

- Reconfiguration via AXI Uartlite and PCIe XDMA
- Integrate for Standalone use
- Applications:
 - Follow up candidate for SPEC [In study]
 - Timing source for the WRITE (White Rabbit Industrial timing Enhancement)
 - High Precision Slaved External Clock (HPSEC)
- Collaboration between NIKHEF and CERN

https://ohwr.org/project/spec7/wikis/home

Outline

- SoC in Accelerator and Technology Sector
- □ SoC based Projects in A&T Sector
 - White Rabbit
 - Switch v4
 - Nodes SPEC7, SPEXI7

Fast Interlock Detection System

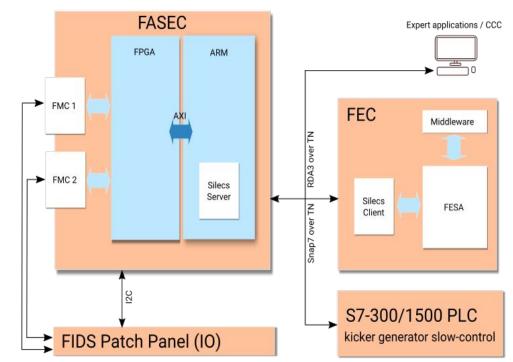
- Distributed I/O Tier
- Beam Control System for SPS LLRF
- Beam Position Monitoring
- Beam Gas Ionization

Requirements

Efforts

- Fast pulsed kicker magnet systems are powered by high-voltage and high-current pulse generators.
- The control of pulsed systems requires the use of fast digital electronics:
 - to perform tight timing control (jitter better than one ns)
 - fast protection of the high-voltage thyratron and semiconductor switches

- Fast pulsed kicker magnet systems are powered by high-voltage and high-current pulse generators.
- The control of pulsed systems requires the use of fast digital electronics:
 - to perform tight timing control (jitter better than one ns)
 - fast protection of the high-voltage thyratron and semiconductor switches
- **Solution**: Single hardware implements fast-interlocking functionality
- Choice of Xilinx Zynq-7000 SoC:
 - Implementation of fast reaction times (<100 ns to retrigger) and variable comparator thresholds require a FPGA
 - Integrate it neatly within the CERN control framework


Courtesy: Pieter Van Trappen, SY-ABT

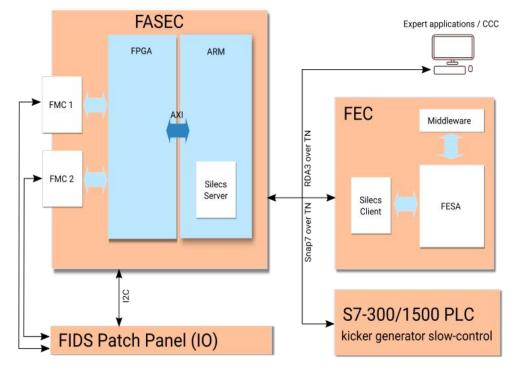
FPGA & ARM SoC FMC Carrier (FASEC)

- XC7Z030 controller, SoC with Kintex-7 fabric (PL) and Dual ARM Cortex-A9 (PS)
- PL:

- Stores logic for fast detection and interlocking

- White Rabbit PTP Core
- **PS**:
 - Implementation of an embedded (SILECS) Snap7 server
 - Automated test-procedure running on the card
 - Integrated digitizer & analysis functionality
 - Permanent diagnostics running on-board
 - Peripheral device drivers in Embedded Linux

https://ohwr.org/project/fasec/wikis/home


FPGA & ARM SoC FMC Carrier (FASEC)

- XC7Z030 controller, SoC with Kintex-7 fabric (PL) and Dual ARM Cortex-A9 (PS)
- PL:

- Stores logic for fast detection and interlocking

- White Rabbit PTP Core
- **PS**:
 - Implementation of an embedded (SILECS) Snap7 server
 - Automated test-procedure running on the card
 - Integrated digitizer & analysis functionality
 - Permanent diagnostics running on-board
 - Peripheral device drivers in Embedded Linux
- 33 Systems installed for PS Booster distributor, PS injection, SPS beam dump extraction and LHC injection installations and 33 more in next upgrade

Courtesy: Pieter Van Trappen, SY-ABT System On Chip Workshop 2021

SoC TECHNOLOGY FOR EMBEDDED CONTROL AND INTERLOCKING WITHIN FAST PULSED SYSTEMS AT CERN P.VAN TRAPPEN et al., ICALEPCS 2019

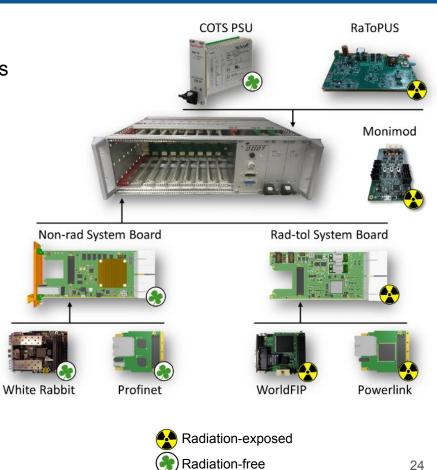
Outline

- □ SoC in Accelerator and Technology Sector
- □ SoC based Projects in A&T Sector
 - White Rabbit
 - Switch v4
 - Nodes SPEC7, SPEXI7
 - Fast Interlock Detection System

Distributed I/O Tier

- Beam Control System for SPS LLRF
- Beam Position Monitoring
- Beam Gas Ionization

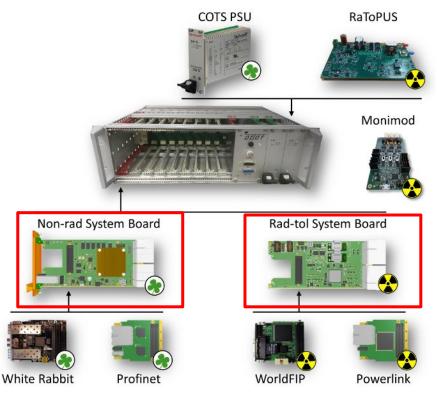
Requirements


Efforts

New Kit for Custom Electronics

Distributed I/O Tier

- Low-cost, modular platform for custom electronics
- based on **industrial** standards
- Radiation-exposed and radiation-free areas

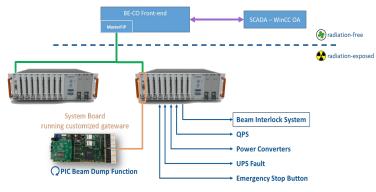

<u>Dildi</u> New Kit for Custom Electronics

Distributed I/O Tier

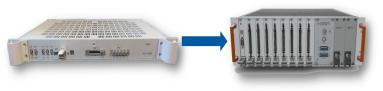
- Low-cost, modular platform for custom electronics
- based on industrial standards
- Radiation-exposed and radiation-free areas
- Interesting SoC use cases:

Non-Radiation Tolerant System Board: PS: Controls framework and services, Remote Upgrades PL: White Rabbit PTP core

Radiation Tolerant System Board: - HydRA SoC Architecture Soft CPU(based on RISC-V):FEC Monitoring Services FPGA:Communication Logic Core

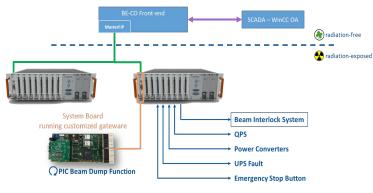


https://ohwr.org/project/diot/wikis/home



Totlot Applications

Powering Interlock Controller, TE-MPE

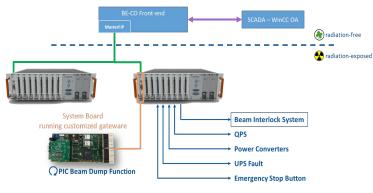


• Fast Interlocks, SY-ABT

$\frac{\pi}{DI/DT}$ Applications

Powering Interlock Controller, TE-MPE

• Quantum Computing, Creotech Instr. S.A., PL

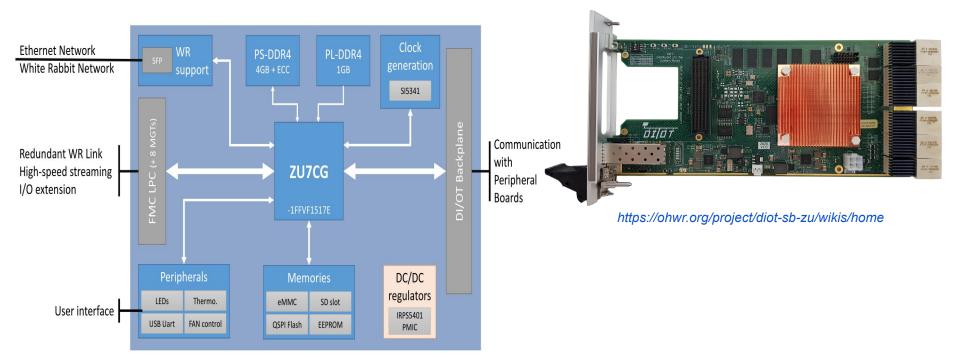

- Coupling Loss Induced Quench System (CLIQ), *TE-MPE*

• Fast Interlocks, SY-ABT

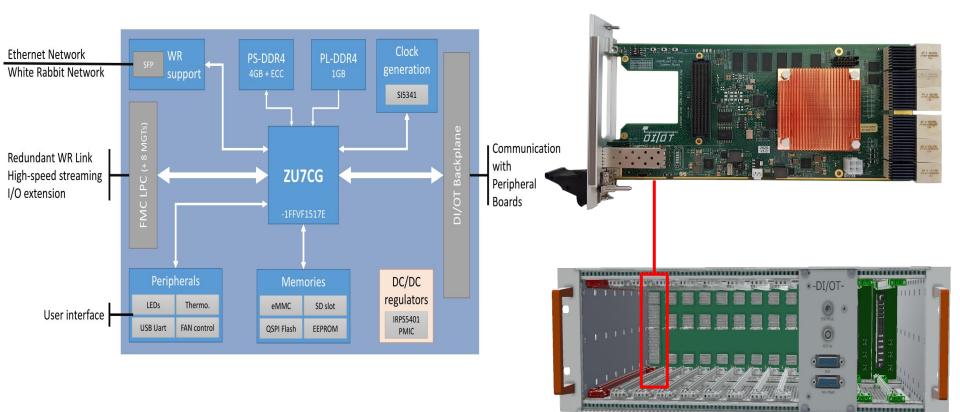
$\frac{\pi}{dI/dT}$ Applications

Powering Interlock Controller, TE-MPE

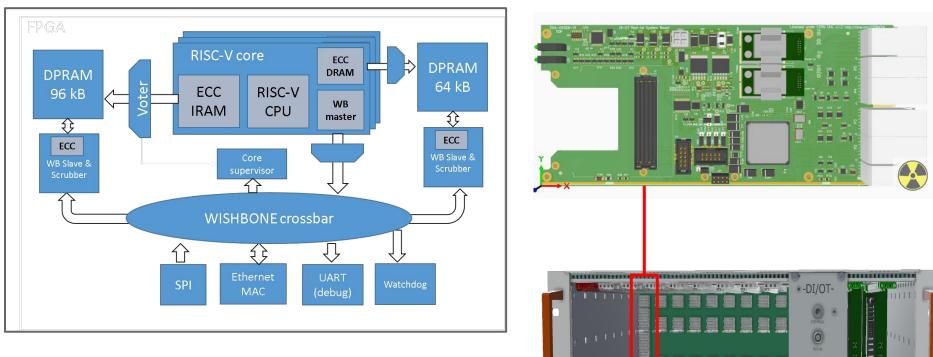
• Quantum Computing, Creotech Instr. S.A., PL


- Coupling Loss Induced Quench System (CLIQ), *TE-MPE*

• Fast Interlocks, SY-ABT


G. Daniluk & E. Gousiou, *BE-Technical Meeting* 04.06.20

Non-Rad Tol System Board


Courtesy: G.Daniluk, E.Gousiou

$\frac{\pi}{dt/dt}$ Non-Rad Tol System Board as Front-End Computer

Courtesy: G.Daniluk, E.Gousiou

Hydra SoC Architecture for Rad Tol System Board

https://ohwr.org/project/hydra/wikis/home

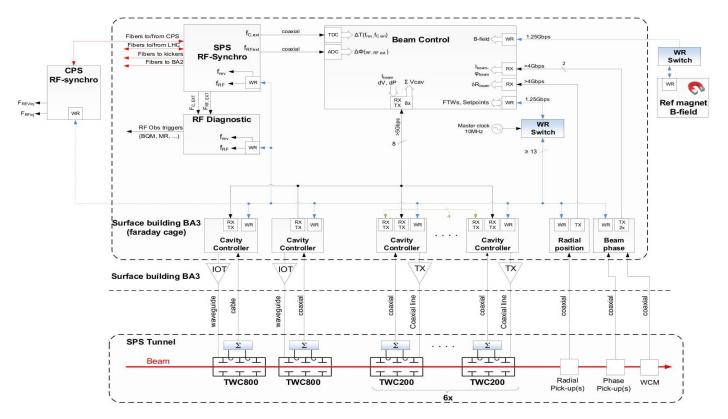
Courtesy: G.Daniluk, M.Rizzi

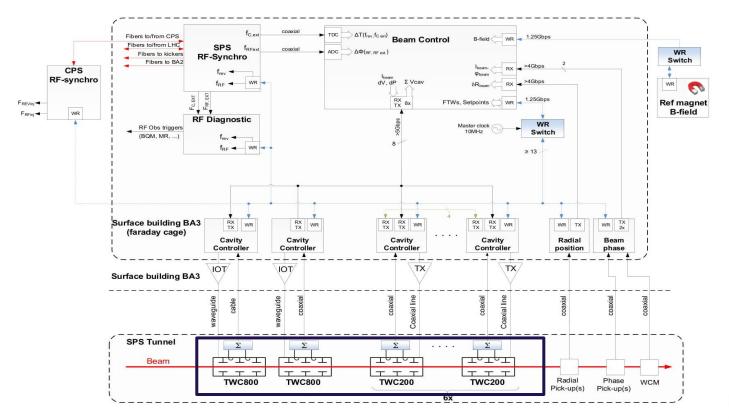
A TRACE BALAN BALANSARA

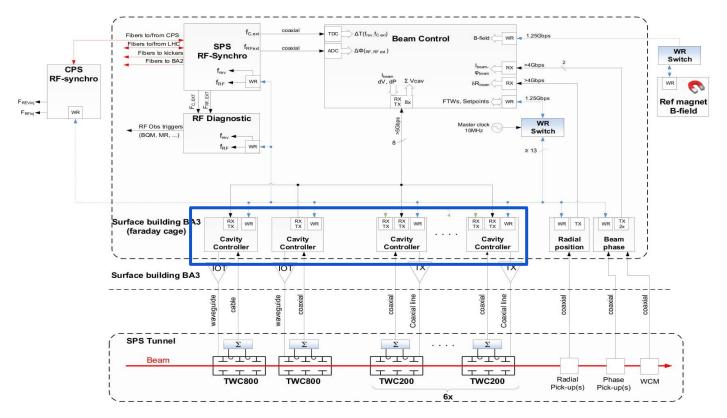
TAACHE

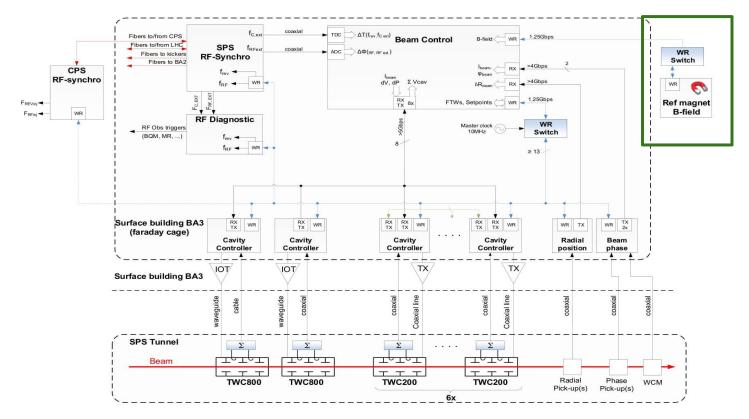
ARRENT STRATES

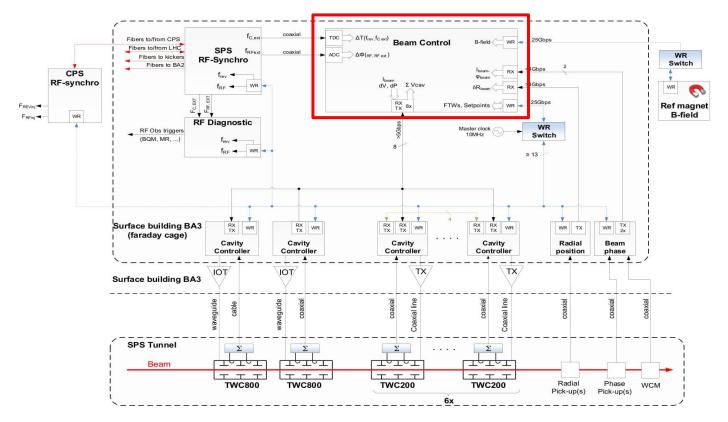
Outline

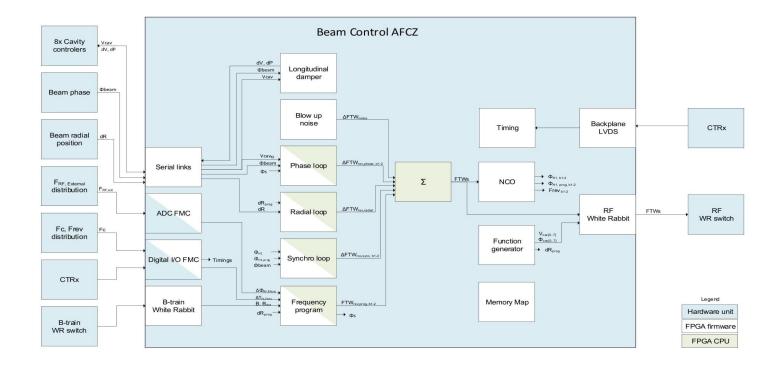

- □ SoC in Accelerator and Technology Sector
- □ SoC based Projects in A&T Sector
 - White Rabbit
 - Switch v4
 - Nodes SPEC7, SPEXI7
 - Fast Interlock Detection System
 - Distributed I/O Tier

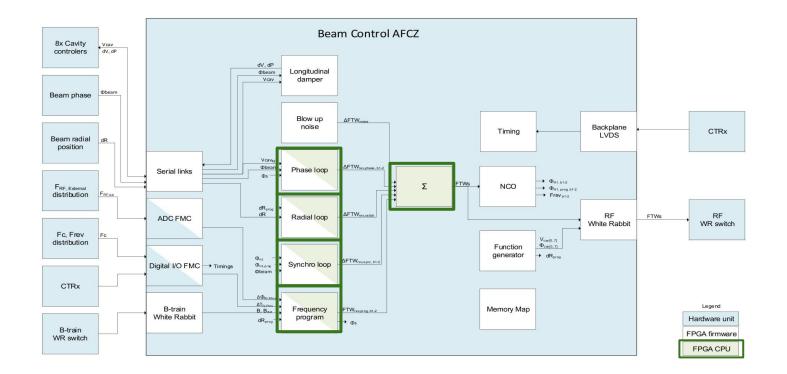

Beam Control System for SPS LLRF


- Beam Position Monitoring
- Beam Gas Ionization

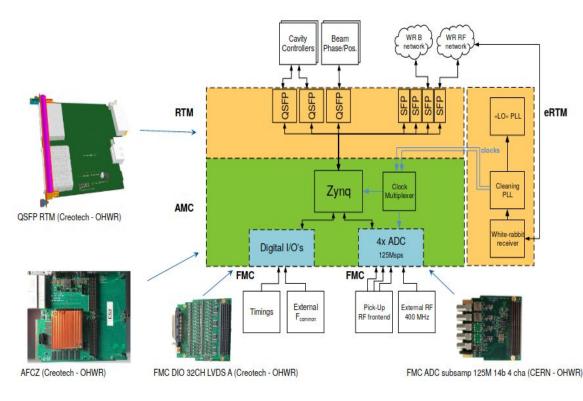

Requirements


Efforts





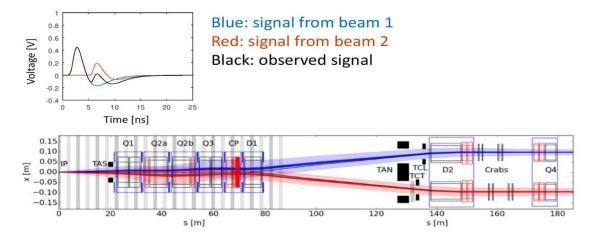
Courtesy: A.Spierer, G.Hagmann, T.Wlostowski

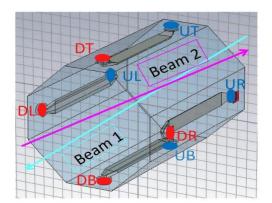


Upgrade of the SPS LLRF beam-based loops on the MicroTCA platform, A.Spierer, LLRF-2019

Upgrade of the SPS LLRF beam-based loops on the MicroTCA platform, A.Spierer, LLRF-2019

- AMC FMC Carrier based on Zynq Ultrascale+ Family
- PL:
 - White Rabbit PTP core to transfer Frequency Tuning Words (FTW) across SPS and LHC
- **PS**:
 - Bare Metal Application that implements biquadratic filters and algorithms to calculate feedback loops
- Beam Control system for SPS LLRF Upgrade deployed at BA3 (surface building) in Faraday Cage

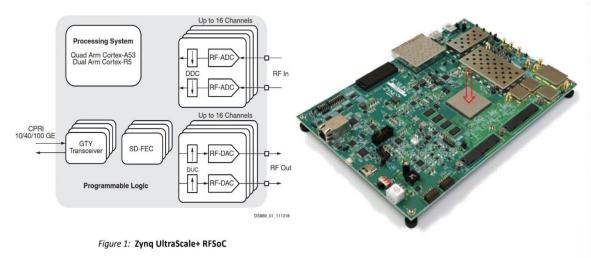

Outline

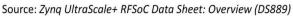

- □ SoC in Accelerator and Technology Sector
- □ SoC based Projects in A&T Sector
 - White Rabbit
 - Switch v4
 - Nodes SPEC7, SPEXI7
 - Fast Interlock Detection System
 - Distributed I/O Tier
 - Beam Control System for SPS LLRF
 - HL-Beam Position Monitoring
 - Beam Gas Ionization

Requirements

□ Efforts

- Close to LHC interaction regions, both beams are in a single pipe
- Each beam couples to a different end of the BPM, so all eight stripline ports should be measured to get horizontal and vertical position of both beams
- Coupling is not perfect, so measured signals contain contributions from both beams and additional processing is required to isolate the signal from the beam of interest

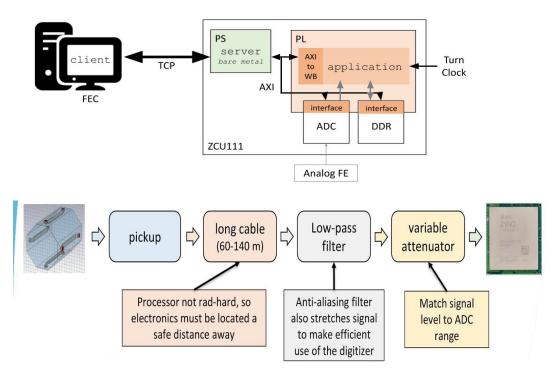




Courtesy: A.Boccardi, D.Bett, I.Degl'Innocenti

Zynq RFSoC as prototype BPM processor [In Study]

- Evaluation board ZCU111 acquired as basis for prototype BPM processor
- RFSoC model XCZU28DR (Xilinx Zynq UltraScale+ architecture, gen. 1)


Courtesy: A.Boccardi, D.Bett, I.Degl'Innocenti

Processing System Features	
Application	Quad-core Arm Cortex-A53
Processing Unit	up to 1.33 GHz
Real-Time	Dual-core Arm Cortex R5
Processing Unit	up to 533 MHz

RF Features			
Max. RF input Frequency (GHz)		4	
Decimation / Interpolation		1x, 2x, 4x, 8x	
12-bit RF- ADC	# of ADCs	8	
	Max Rate (GSPS)	4.096	
14-bit RF DAC	# of DACs	8	
	Max Rate (GSPS)	6.554	

Programmable Logic		
System Logic Cells (K)	930	
DSP Slices	4,272	
Memory (Mb)	60.5	
33 Gb/s Transceivers	16	
Maximum I/O Pins	347	


Zynq RFSoC as prototype BPM processor

- Proof of Concept Implementation:
 - Acquire raw-data from Analog FE
 - Digitization of two planes pick-up signals
 - Data read-out from the memory for offline analysis
- Next, BPM Data-processing inside the FPGA
- **SoC:** Provides RF chain, DACs and ADCs on a single chip
- PL: Data Acquisition, Digitizing and Processing
- **PS**: Network Interface, Upstream data to FEC, RPU
- Simulation Framework for Study

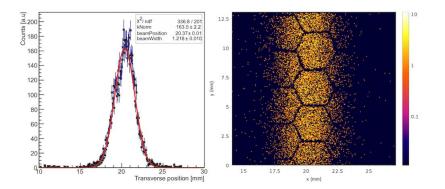
Courtesy: A.Boccardi, D.Bett, I.Degl'Innocenti

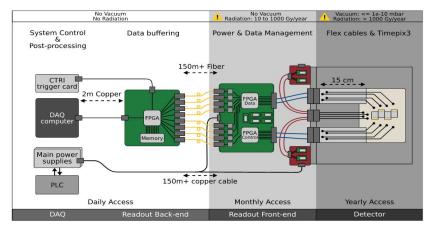
Zynq RFSoC as prototype BPM processor

Courtesy: A.Boccardi, D.Bett, I.Degl'Innocenti

Proof of Concept Implementation:

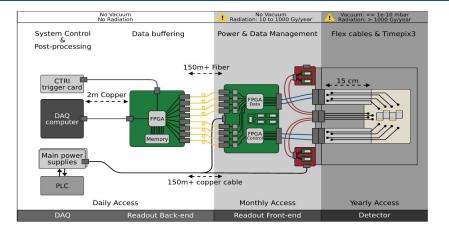
- Acquire raw-data from Analog FE
- Digitization of two planes pick-up signals
- Data read-out from the memory for offline analysis
- Next, BPM Data-processing inside the FPGA
- **SoC:** Provides RF chain, DACs and ADCs on a single chip
- PL: Data Acquisition, Digitizing and Processing
- **PS**: Network Interface, Upstream data to FEC, RPU
- Simulation Framework for Study

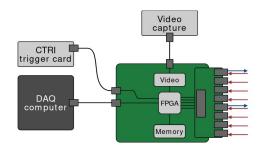

SIMULATION OF THE SIGNAL PROCESSING FOR THE NEW INTERACTION REGION BPMs OF THE HIGH LUMINOSITY LHC, D.BETT, IBIC 2020

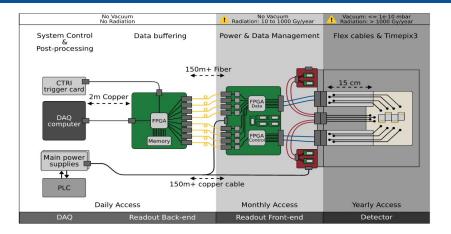

Outline

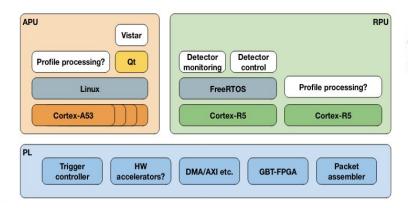
- □ SoC in Accelerator and Technology Sector
- □ SoC based Projects in A&T Sector
 - White Rabbit
 - Switch v4
 - Nodes SPEC7, SPEXI7
 - Fast Interlock Detection System
 - Distributed I/O Tier
 - Beam Control System for SPS LLRF
 - HL-Beam Position Monitoring
 - Beam Gas Ionization
- Requirements

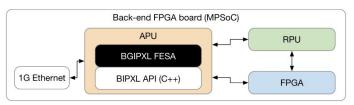
Efforts

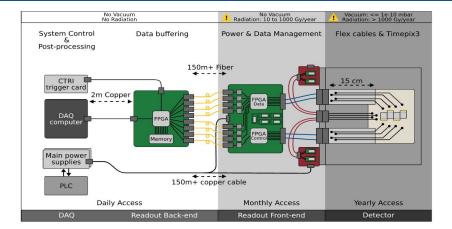

- BGI profile monitors based on Timepix3 pixel detectors
- 2 operational monitors are installed in the PS and 2 monitors are planned to be installed in the SPS

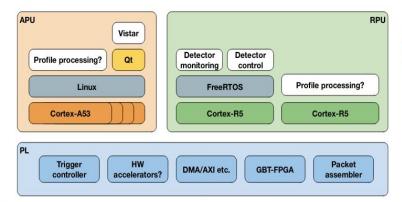



Courtesy: J.Storey, H.Sandberg

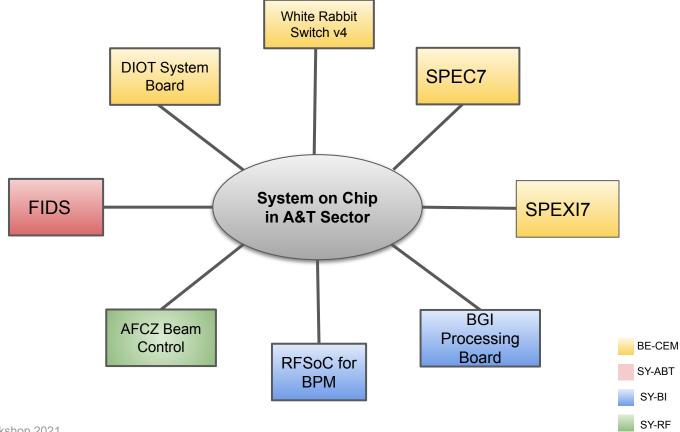

- BGI profile monitors based on Timepix3 pixel detectors
- 2 operational monitors are installed in the PS and 2 monitors are planned to be installed in the SPS
- Existing System:
 - Xilinx VC707 FPGA
 - CTRI to controls the acquisition time
 - Video transmitter chip provides a DVI compatible video signal


- BGI profile monitors based on Timepix3 pixel detectors
- 2 operational monitors are installed in the PS and 2 monitors are planned to be installed in the SPS
- Existing System:
 - Xilinx VC707 FPGA
 - CTRI to controls the acquisition time
 - Video transmitter chip provides a DVI compatible video signal
- New MPSoC System [In study]:
 - Xilinx Zynq Ultrascale+ MPSoC
 - One RPU with a monitoring firmware would run that takes care of the communication with the front-end
 - -Other RPU video frame generation complementing Linux in A53




Courtesy: J.Storey, H.Sandberg

- BGI profile monitors based on Timepix3 pixel detectors
- 2 operational monitors are installed in the PS and 2 monitors are planned to be installed in the SPS
- Existing System:
 - Xilinx VC707 FPGA
 - CTRI to controls the acquisition time
 - Video transmitter chip provides a DVI compatible video signal
- New MPSoC System [In study]:
 - Xilinx Zynq Ultrascale+ MPSoC
 - One RPU with a monitoring firmware would run that takes care of the communication with the front-end
 - Other RPU video frame generation complementing Linux in A53



https://bgi.web.cern.ch/bgi/introduction.html

SoC in Accelerator and Technology Sector

System On Chip Workshop 2021

51

Outline

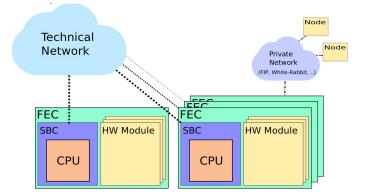
- □ SoC in Accelerator and Technology Sector
- □ SoC based Projects in A&T Sector
 - White Rabbit
 - Switch v4
 - Nodes SPEC7, SPEXI7
 - Fast Interlock Detection System
 - DIOT
 - Beam Control System for SPS LLRF
 - HL-Beam Position Monitoring
 - Beam Gas Ionization

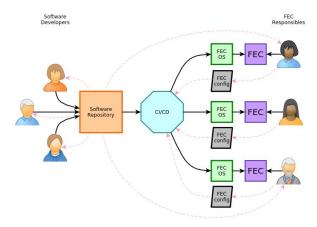
Requirements

Approach

- Common toolchains and build environment to support PS and PL
- **Unified development model**, uniform remote upgrade systems i.e TFTP Server for storing bitstream, kernel image and rootfs
- A common **deployment strategy** over network i.e boot server
- Safe Upgrade support
- For some specific projects, a **standard Linux Image with Control services** provided by BE-CEM

Outline

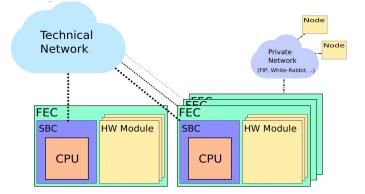

- □ SoC in Accelerator and Technology Sector
- □ SoC based Projects in A&T Sector
 - White Rabbit
 - Switch v4
 - Nodes SPEC7, SPEXI7
 - Fast Interlock Detection System
 - Distributed I/O Tier
 - Beam Control System for SPS LLRF
 - Beam Position Monitoring
 - Beam Gas Ionization

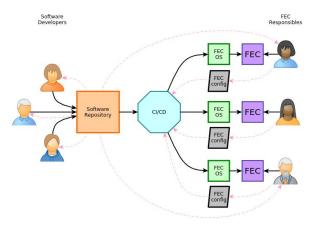

Requirements

□ Approach

Approach

- System on Chip Study conducted to know about the common needs and issues in A &T Sector
- With FEC Linux Standardization project study the possible Linux distributions and recommend an option for the SoC platforms
- Study of **available tools** Yocto, Buildroot, ELBE, Civil Infrastructure Project
- **CI/CD for gateware** ongoing effort in BE-CEM and TE-EPC

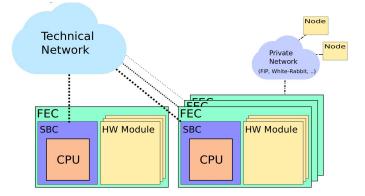


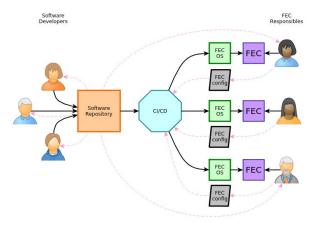


Approach

- System on Chip Study conducted to know about the common needs and issues in A &T Sector
- With FEC Linux Standardization project study the possible Linux distributions and recommend an option for the SoC platforms
- Study of **available tools** Yocto, Buildroot, ELBE, Civil Infrastructure Project
- **CI/CD for gateware** ongoing effort in BE-CEM and TE-EPC

System-On-Chip Support Study, F.Vaga, BE-CO TM



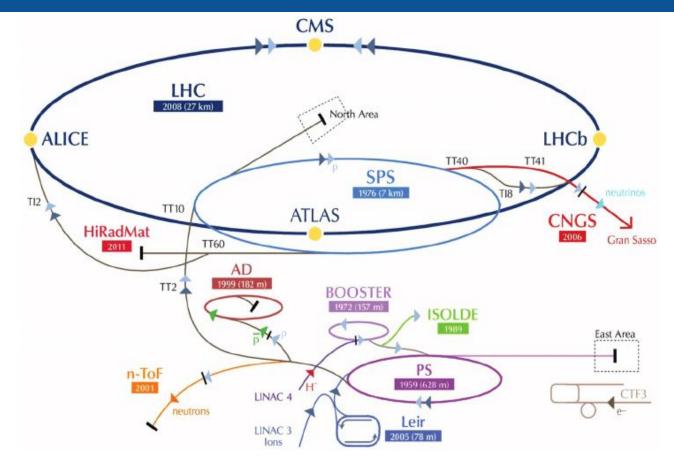

Approach

- System on Chip Study conducted to know about the common needs and issues in A &T Sector
- With FEC Linux Standardization project study the possible Linux distributions and recommend an option for the SoC platforms
- Study of **available tools** Yocto, Buildroot, ELBE, Civil Infrastructure Project
- **CI/CD for gateware** ongoing effort in BE-CEM and TE-EPC

System-On-Chip Support Study, F.Vaga, BE-CO TM

https://gitlab.cern.ch/cce/cce

- System on chip used in A&T :
 - Data Acquisition Systems
 - Controls and Timing
 - Real Time Processing
- Increase in usage of SoC in A&T from LS2 to LS3 and many more applications in coming future
- Main challenges identified as:
 -Need for unified development and deployment environment
 -Integration with control frameworks
- Looking forward to understand best practices through collaborations



Thank you!

SoC in Accelerator Complex

SoC in Accelerator Complex

