

HSF and EP R&D Plans

Graeme Stewart

HEP Software Foundation

Graeme, with HSF Coordination and WG Conveners

HEP Software Foundation Origins

- Organisation that started in 2015 with the aim of facilitates cooperation and common efforts in High Energy Physics software and computing internationally
- Inspired by the challenges faced by the field in the coming decades
 - From the ambitious physics programmes that we have
 - Run 3 upgrades for ALICE and LHCb
 - New detectors, far high data rates being pushed into the software pipelines
 - HL-LHC for ATLAS and CMS
 - Pileup of up to 200, trigger rates increase by "x10
 - To say nothing of Belle II, DUNE, FCC, ...
 - From computing technology evolution
 - The 'free lunch' has been over for more than a decade
 - We are still learning how to effectively use parallelism
 - GPUs are becoming fairly ubiquitous, along with other hardware (TPUs, FPGAs)

Potted History of the HSF

- 2015 HSF gets started
 - Discussion on packaging tools and licenses are some of the first activities
- 2016 Charged by WLCG to produce a vision of computing for 2020s
- 2017 <u>Community White Paper</u> is written
 - o 310 authors from 124 institutes, 14 chapters covering HEP software and computing matters
- 2018 First workshops digesting the outcomes of the CWP
 - WLCG-HSF Workshop in Naples
 - HSF-LPCC Workshop on Event Generators
 - PyHEP group starts up at Sofia <u>2018 pre-CHEP workshop</u>
- 2019
 - Setup new working groups in Analysis, Simulation, Reconstruction
 - Significant involvement in <u>European Strategy</u> process
- 2020
 - Moved to the successful working group model in other areas
 - Formalised role at the LHCC, involvement in <u>HL-LHC software and computing review</u>

Coordination Meetings

- Our "beating heart" as the HSF!
 - o Pass news, review upcoming activities, discuss matters where everyone could contribute
 - Open to all, with coordination and conveners largely attending
- We moved to bi-weekly in 2020
 - On odd-numbered weeks (use even-weeks if there is an exceptional need)
- We have continued to plan on bi-weekly meetings for 2021
 - https://indico.cern.ch/category/7970/
 - All in the HSF calendar...

Community Calendar

- Service we run for the community
- It is the go-to place to check that events you want to host don't clash with others
- Add this to your own calendar via iCal
- Add your events...
 - Ask coordination team (or Graeme)

Future HSF and Community Events

To add this calendar to your own setup, use this ical link.

Working Groups

- Working groups provide the bulk of the HSF's substantive activity
- Focused on one area, though these are often cross-cutting
- Different working groups adopt different modes of working
 - This seems pretty naturally connected to their different areas of interest
 - In particular, Training and PyHEP have a very large engagement outwith the HSF and HEP software development 'core', so focus on larger events
 - Autonomy for each working group is actually a good thing
 - The convenors are experts in the areas they work in
 - Refresh of convenors in 4 groups for 2021
 - 1-2-3 or year terms

Working Group Convenors in 2021 (new)

Data Analysis

- Chris Burr (LHCb)
- Allison Hall (CMS)
- Teng Jian Khoo (ATLAS)

Detector Simulation

- Ben Morgan (ATLAS+Geant4)
- Krzysztof Genser (Mu2e+Geant4)
- Kevin Pedro (CMS)

Frameworks

- Chris Jones (CMS)
- Kyle Knoepfel (Neutrino expts.)
- Attila Krasznahorkay (ATLAS)

Physics Generators

- Andrea Valassi (LHCb)
- Efe Yazgan (CMS)
- Josh McFayden (ATLAS)

PyHEP

- Eduardo Rodrigues (LHCb)
- Jim Pivarski (CMS)
- Ben Krikler (LZ)

Reconstruction and Software Triggers

- Dorothea vom Bruch (LHCb)
- Andreas Salzburger (ATLAS)
- David Lange (CMS)

Software Developer Tools and Packaging

- Serhan Mete (ATLAS)
- Marc Paterno (DUNE)
- Mircho Rozodov (CMS)

Training

- Sudhir Malik (CMS)
- Meirin Oan Evans (ATLAS)
- Michel Hernandez Villanueva (Belle II)

Working Group Plans in 2021

Detailed plans are being made by each working group now... and we will be presenting them at this
Thursday's Coordination Meeting

Working Group	Early Planned Activity in 2021 (italics means things likely to be touched on, but TBD)
Data Analysis	Metadata handling for analysis
Detector Simulation	Fast simulation ML, Accelerator R&D
Frameworks	Offload to accelerators
Physics Generators	Negative event weights, Accelerator R&D
РуНЕР	Topical meetings throughout 2021 (Python module of the month!); PyHEP 2021
Reco and Triggers	Accelerator based reconstruction and optimisation, Real time reconstruction/analysis
Tools and Packaging	Spack, performance analysis tools
Training	Run training following on from very successful 2020, develop material from hackathon

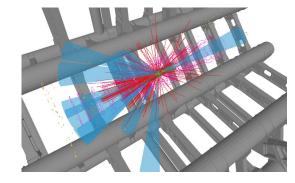
Compute Accelerator Forum

HSF.

- Started in October last year
 - Cross-cutting talks on this important topic
 - Co-organised with openlab and SIDIS
 - Last year looked at
 - How do I get a GPU (access at CERN and in WLCG)?
 - Device abstraction in LHCb's Allen and ALICE's reconstruction code
 - Nsight introduction/tutorial from NVIDIA
 - Busy schedule planned for this year, https://indico.cern.ch/category/12741/...
 - Just looked at SYCL and HLS4ML
 - Detector Geometry on GPUs
 - Belle II GPU Reconstruction
 - Libcu++
 - More abstraction APIs (Alpaka, etc.)
- Topic suggestions welcome:
 - o <u>compute-accelerator-forum-organizers@cern.ch</u>

Training Development

- We have a big problem in our community to provide scalable and sustainable training
- So as well as the extremely active hosting of training events that happened last year
- We want to work on reusable modern training material
 - Following on from the <u>hackathon</u>
- C++ is a particular area where generic training material is weak
 - So we have now started to develop our own
 - https://github.com/hsf-training/hsf-training-cpp-webpage
 - Hope to complete this Basic Modern C++ course by the summer (or before!)
- This is a particularly fruitful area for people to contribute too



HSF Activities and GSoC

- We have a few other activity areas, which are quite variable in their activity
 - Quantum computing (mostly moved up to openlab and CERN quantum initiative)
 - Event displays (<u>Phoenix</u> is very active as a project)
 - o iDDS (intelligent Data Delivery Service)
 - Differentiable computing
- Our most important contribution here is, without a doubt, <u>Google Summer of</u>

<u>Code</u> and <u>Season of Docs</u>

- Building on success year on year
- 2021 should be no exception
- N.B. This year's GSoC changes significantly the length of student projects
 - This will require more focused proposals
 - See recent messages from organisers , proposals by 15 February

Workshops

- Our workshop plans in 2020 were substantially changed by the Covid pandemic
 - We had to drop the visit to Lund and turn that into the <u>May virtual workshop</u> with WLCG
 - Focus on New Architectures, Portability, and Sustainability
 - Organised a <u>second virtual workshop</u> in November
 - Highlighted a few WG areas (Simulation, Generators), plus an open call for abstracts
 - N.B. Experience of running virtual workshops was reported to <u>HEPiX</u> and in <u>EP Department Newsletter</u>
- These were a success, but... pandemic continues and there is some sense of Zoom-fatigue
- Constraints from large software and computing events (see <u>HSF calendar</u>) in addition to obvious experiment weeks: vCHEP 17-25 May; ACAT 29 Nov - 3 Dec
- We decided not to have a long workshop in the first half of the year
 - We may go for a workshop in the Autumn (27 Sept 1 Oct), TBD
 - Try to focus on 'one-shot' events, crossing WG boundaries as needed (e.g., I/O from the software, framework and site point of view)

Organisational Engagement

- Notwithstanding that the HSF is an organisation of people in HEP and mostly in experiments and often in other projects...
- Who does the HSF engage with?
 - Experiments
 - Openlab & SIDIS
 - Nuclear physics
 - Funded R&D projects
 - IRIS-HEP
 - HEP-CCE
 - SwiftHEP & Excalibur-HEP
 - EP R&D
 - ESCAPE
 - ECFA and EPPSU ← _____

Snowmass -

Keep up these high-level advocacy contacts!

Nuclear Physics and the Software and Computing Roundtable

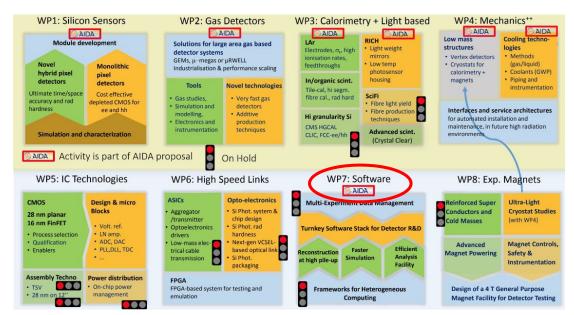
- Nuclear physics is a very close cousin of HEP
 - Growing size of collaborations
 - Electron-Ion Collider (EIC, will be built at BNL, USA)
 - FAIR Project (Darmstadt, Germany)
- We contributed to and heard from the Nuclear Physics Trends Workshop
- Concrete outcome is that we have joined the <u>Software and Computing</u> <u>Roundtable</u> (Agendas: <u>2020</u>, <u>2021</u>)
 - Covers a wide range of topics (v. similar to our HSF Software Forum, but also computing)
 - Started as a JLab meeting series, then joined by BNL, then by HSF at end of last year
 - Strong nuclear physics presence, so excellent for engagement with this community
 - Also busy, one meeting per month
 - Next month, Jakob will cover ROOT I/O and RNTuple!

LHCC and HL-LHC Review

- Regular engagement with LHCC
 - Meeting 4x year between referees and WLCG, LHC experiments and HSF (for common software) each time
 - Topics are decided by the referees, but we can make suggestions!
 - Recently has covered ROOT, Detector Simulation, Generators, plus a few general summary talks
 - Liz Sexton-Kennedy and Graeme are officially appointed as Software Liaisons to WLCG from the end of last year
- HL-LHC Review
 - We prepared an <u>HSF document</u> covering the important software areas last year
 - That was a lot of work (thank you!) and was well received by the reviewers
 - This year (Nov) we have the second phase of the review
 - Most work will go out to specific software projects (inc. ROOT and Geant4), but HSF (through Graeme and Liz) has a role to help in coordination

HSF Summary and Outlook...

- We did a lot in 2020
 - It was a challenging year for everyone, in many different ways
 - HSF has achieved reputation and recognition in HEP and is appreciated
 - This is a great outcome for a community based coalition-of-the-willing
- We are on a good path for 2021
 - Active engagement and creative thinking are the key to success
 - So of course corrections throughout the year are to be expected!
 - We have a great team of people in the HSF
 - There are many areas where you can be involved and contribute!

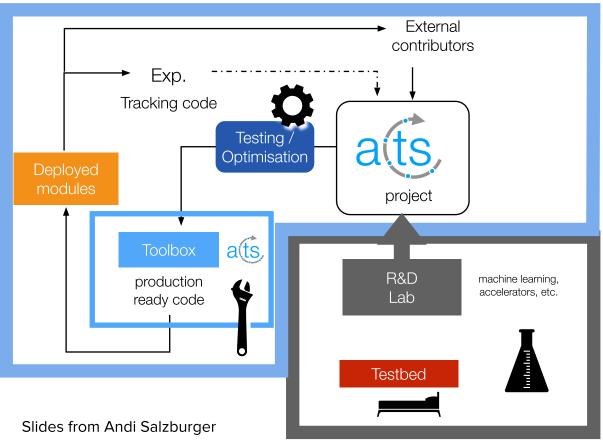

HSF Forum Mailing List: hsf-forum@googlegroups.com

EP R&D - Software Work Package

Graeme and Jakob, plus task leaders and our fellows and students

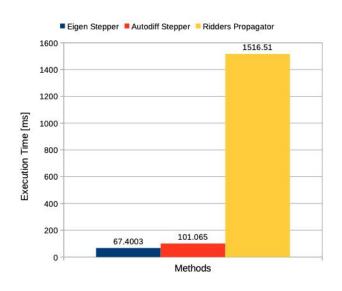
CERN EP R&D Programme

- Programme on <u>R&D for new Detector Technologies</u>
- Started planning in 2018, funded from 2020



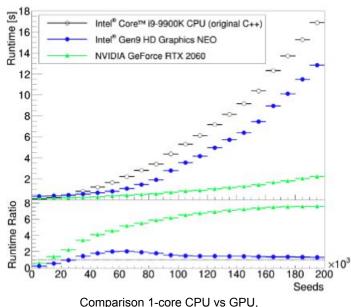
Software Work Package (<u>link</u>)

- Turnkey Software Stack, Key4hep
 - Flexible and modern software stack, ready for physics studies for future experiments
 - Valentin Volkl working with André since January 2020
 - Planning report next week (25 Jan)
- Faster Simulation
 - Machine learning based fast, generic, simulation techniques
 - Dalila Salami joined SFT this month
 - Planning report in two weeks (1 Feb)
- Efficient Analysis
 - Design data structures and interfaces to support very high throughput analysis
 - Vincenzo Padulano and Javier Lopez-Gomez working with Jakob and Enric
 - Planning report in three weeks (8 Feb)
- Reconstruction at High Pileup...


ats, project - Roadmap

- Toolbox with production-ready code
 - ▶ e.g. ATLAS Run-3 vertexing
- R&D/Lab that feeds into toolbox, 2 main R&D lines
 - Tracking & ML
 - Tracking on GPUs
- TrackML & OpenDataDetector
 - Quasi-realistic testbeds

- Seed & track classification
 - DNN seed classifier, DNN ambiguity solver
- Auto-differentiation [WLCG/HSF Workshop, Nov 2021]
 - ▶ Automated Jacobian calculation using auto-diff
- NEW: ML Detector navigator
 - Learned navigation through detector using embedded space
- Bucketing, TrackNet [NeurlPS2021]
 - Approximate Nearest neighbourhood bucketing, clustering in learned metric space

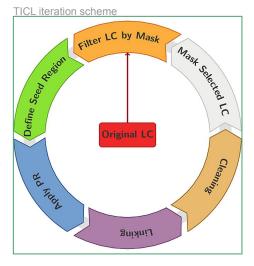


current R&D projects GPU

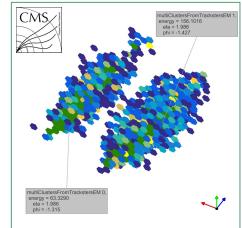
Overview talk: X. Ai, WLCG-HSF Workshop, Nov 2020]

- GPU Seeding algorithm
 - ▶1 CPU version, vs 2 CUDA versions, 1 SYCL version
- Prototypes: Runge-Kutta-Propagation, Kalman Filter
 - ▶ Still lacking proper geometry support
- NEW: GPU-friendly geometry project for Tracking
 - Acts/detray library to be released in Q1/2021
 - Non-polymorphic geometry library
- STARTING: Chain demonstrator
 - Clustering Space Point Formation Seeding

multi-core CPUs remain currently competitive


Introduction

- Particle shower reconstruction in high-granularity calorimeter is very interesting task in high-density environments
 - Many showers tend to overlap
 - Typical situation at HL-LHC
 - Standard reconstruction algorithms using combinatorics are expected to fail due to memory/timing explosion
 - Fertile ground for new techniques and algorithms: clustering, machine learning, graph theory, and modern computer architectures
 - Planned and designed, taking into account the information from the tracking system and timing detectors
 - Development can profit from experience with Particle Flow techniques of CMS experiment
 - New flexible framework can be re-used in other (future) experiments using high-granularity calorimeters facing high pile-up conditions



What is TICL?

- TICL (The Iterative Clustering) is a modular framework integrated and under development in CMSSW
- Main purpose: processing calo rechits (x, y, z, t, E) and returning particle properties and probabilities
- In a nutshell: grouping 2D layer clusters (<u>CLUE</u>) into 3D clusters (Tracksters) iteratively to reconstruct different particle species
- Important features:
 - No prior knowledge of CMSSW needed to contribute
 - Modules are designed such that new algorithms or techniques (e.g. Machine Learning) can be plugged on top easily
 - Algorithms are designed as swappable plugins, with heterogeneous architectures / portability in mind
 - Mostly geometry independent
- <u>Documentation</u>

Example of two close-by reconstructed tracksters

Conclusion

- EP R&D got off to a decent start in the software work package in 2020
 - We were less affected than other WPs where lab work is more important
 - We also managed to procure some nice machines for the R&D work
 - Which are being hosted in the Meyrin data centre
- Excellent links from the R&D to other activities on software
- This year should be a very productive one!