

PID options with RPCs

Roberto Preghenella

Istituto Nazionale di Fisica Nucleare, Bologna

RD51 Workshop on Gaseous Detector Contribution to PID 16 February 2021

preghenella@bo.infn.it

Precision timing

● always been a prominent topic in HEP instrumentation

- trigger applications
- time-of-flight particle identification

● resistive plate chambers

- widely used for large-area applications (in place of scintillators)
- MRPC achieved < 50 ps time resolution

● silicon sensors

- \circ recently very popular for timing in HEP
- HL-LHC for pile-up rejection
- rapid progress for consumer applications (imaging, LIDAR, 3D scanners)

Precision timing

● always been a prominent topic in HEP instrumentation

- trigger applications
- time-of-flight particle identification

● resistive plate chambers

- widely used for large-area applications (in place of scintillators)
- MRPC achieved < 50 ps time resolution

● silicon sensors

- recently very popular for timing in HEP
- HL-LHC for pile-up rejection

rapid progress for consumer applications (imaging, LIDAR, 3D scanners)

but today we are talking about gaseous detectors

no space for discussion of silicon sensors

Particle identification

with a TOF detector that measures the time-of-flight

of a particle with momentum p flying over a trajectory length L

$$
m^2 = \frac{p^2}{c^2} \left(\frac{c^2 t^2}{L^2} - 1 \right)
$$

$$
\left(\frac{\delta m}{m}\right)_p = \frac{\delta p}{p}
$$

$$
\left(\frac{\delta m}{m}\right)_L = \gamma^2 \frac{\delta L}{L}
$$

$$
\left(\frac{\delta m}{m}\right)_t = \left(\gamma^2 \frac{\delta t}{t}\right)
$$

 $t_0 = 0$

TOF

p, L

same δ m at twice p requires 4-fold better δt (or 4-fold longer L) time-of-flight is a viable technique at **low/intermediate p**

10% resolution on mass for a 5 GeV/c proton ($y^2 = 40$) requires 0.25% resolution on time-of-flight assuming L = 5 m, t = 16.97 ns \Rightarrow t ~40 ps

Particle identification

capability of a TOF detector is better quantified

by the time-of-flight difference of two particles with unequal mass m_1 and m_2 flying with the same momentum p over the same trajectory length L (assuming $\beta y > 1$)

$$
t_1 \sum_{t_1, t_2} t_3 \sum_{t_4 = 0} t_1 - t_2 = \frac{L}{2c} \left(\frac{m_1^2 c^2 - m_2^2 c^2}{p^2} \right)
$$

with the separation power defined as

$$
n_{\sigma} = \frac{t_1 - t_2}{\delta t}
$$

a 5 GeV/c proton reaches the TOF detector which measures a time-of-flight of t = 16.97 ns over a trajectory of $L = 5$ m to be able to tell that this is not a kaon with better than 99% CL (30) the time-of-flight resolution must be better than $\delta t = 70$ ps

Particle identification

Parallel chambers

● Parallel Plate Chamber

- one of the first parallel chambers, realised around 1950
- \circ needed external circuit to quench the discharge \rightarrow limited rate capability

● Resistive Plate Chamber

- invented in 1980 by Santonico & Cardarelli
- \circ replaces conductive plates with resistive plates \rightarrow self-quench, localised V drop
- \circ 2 mm gas-gap, good time resolution \sim 1 ns

● Pestov Counter

- \circ 100 µm gas-gap, excellent time resolution \sim 50 ps
- \circ non-commercial glass, high-pressure operation \sim 12 atm

● **Multigap Resistive Plate Chamber**

- invented in 1996 by Williams within the LAA Project
- o instead of one small gap at high pressure, many gaps at 1 atm

From the RPC to the MRPC

● electron avalanche

- o grows according to Townsend law, $N = N_0 e^{ax}$
- detectable signals produced by avalanches that cross full gas-gap
- only ionisation clusters produced close to cathode are important for signal generation
- only few clusters take part in signal production

● time jitter

- is due to how avalanche develops initially
- \circ $\sigma_t = 1.28 / (\alpha \eta)$ v

Riegler et al., NIM A 500 (2003) 144

● reduce jitter by

- increasing Townsend coefficient
- increasing electron drift velocity
- have simultaneous signals from many avalanches
- **basically increase the E field**

$- H.V.$ E $+ H.V.$

From the RPC to the MRPC

● increase gas gain

- such that avalanche produces detectable signal immediately
- this needs an extraordinarily high gas gain
- we will have streamers, sparks, …

● need a way to stop avalanche growth

- \circ add barriers within the gas gap to stop avalanche development
- must be invisible to the fast induced signal
- use resistive plates

● the Multigap RPC was born

Cerron Zeballos et al., NIM A 374 (1996) 132

Multigap Resistive Plate Chamber

● stack of equally-spaced resistive plates

- with voltage applied to external surfaces
- all internal plates electrically floating
- **● pickup electrodes on external surfaces**
	- resistive plates transparent to fast signal
- **● internal plates**

take correct voltage

- initially due to electrostatics
- but kept at correct voltage by flow of electrons and positive ions
- feedback principle that dictates equal gain in all gas gaps

this detector is cheap, easy to build and can cover large areas ¹⁰

Multigap Resistive Plate Chamber

the Multigap RPC has been a game-changer technology

for precision timing applications \rightarrow Time-of-Flight detectors

The ALICE experiment

a dedicated general-purpose detector for heavy-ion physics at the LHC

- **● designed to cope with very high multiplicities**
	- \circ dN_{ch}/dη ≤ 8000
	- 3D tracking with TPC
- **• low-p_T** tracking
	- \circ moderate B = 0.5 T
	- thin materials
- **● employs all known PID techniques**
	- dE/dx in silicon and gas
	- Cherenkov imaging
	- transition radiation, muon filters, ...
- **● among which a large TOF array**

ALICE, JINST 3 (2008) S08002 ALICE, J.Phys.G 41 (2014) 087001

The ALICE Time-Of-Flight detector

designed for hadron identification in Pb-Pb collisions

a detector that had to satisfy several demanding requirements for physics

- **● large coverage**
	- \circ ~ 140 m²
- **● high efficiency**
	- $> 95 \%$
- **● good time resolution**
	- 100 ps
- **● high granularity**
	- \circ ~ 10⁵ channels

Similarly the STAR experiment

needed a Time-of-Flight detector

roughly half of the produced particles could not be directly identified by the TPC

● scintillator-based TOF

- with Mesh Dynode PMT
- could meet the requirements
- **● but**
	- large size of PMTs
	- enormous cost of PMTs
- **● very expensive system**
	- 50 M\$ for 10% occupancy
- **● think about ALICE-TOF**
	- \degree STAR-TOF area ~ 50 m²

the advent of MRPC was providential: use a gaseous detector

to satisfy the requirements at a reasonable cost

Full-size STAR-TOF prototype

prototypes constructed and installed in the experiment (2002-2005)

STAR-TOF MRPC tested at CERN in 2001 (a variant of the MRPC developed for ALICE-TOF) wide voltage plateau with > 95% efficiency time resolution below 75 ps

TOFr: first full-sized prototype a "tray" with 30 MRPCs $-1 < n < 0$ $1/60$ th of $2π$

Full-size STAR-TOF prototypes

first physics results from a MRPC-based TOF system

on hadron $\bm{{\mathsf{p}}}_{{\mathsf{T}}}$ distributions & the Cronin effect in ${\mathsf{pp}}$ and d-Au collisions

Full-size STAR-TOF prototypes

TOF also works as an effective electron ID detector

in combination with TPC dE/dx

The ALICE Time-Of-Flight detector

designed for hadron identification in Pb-Pb collisions

designed for 3σ π/K separation up to 2.5 GeV/c and p/K up to 4.0 GeV/c

● Design

- cylindrical surface
- \circ 3.7 < r < 4.0 m from beam line
- 2π full azimuthal acceptance
- \circ |η| < 0.9 polar acceptance
- 18-fold segmentation in φ
- 5-fold segmentation in z
- 1638 MRPC strip detectors
- pointing geometry

The ALICE-TOF Multigap RPC

double-stack design

two stacks of resistive plates 10x 250 μm gas gaps 120×7.4 cm² active area

highly-segmented readout

96 pickup pads 3.5×2.5 cm²

Front-end electronics

based on the NINO ASIC chip

low power consumption

0.25 μm CMOS

- **differential** amplifier + discriminator
- input charge measurement via ToT

Anghinolfi et al, NIM A 533 (2004) 183

ALICE-TOF front-end card

Readout electronics

housed in water-cooled custom VME crates

designed to work in $B = 0.5$ T

TDC Readout Module

multi-hit / multi-event design based on HPTDC ASIC chip (24.4 LSB)

Data Readout Module

interface to DAQ/trigger

Local Trigger Module

local trigger + FEE monitor/setup

Clock Distribution Module

high-quality clock distribution to TRMs

Test beam performance

MRPC mass production + final electronics

 $\rm C_2H_2F_4$ (90%) $\,$ i-C₄H₁₀ (5%) $\,$ SF $_{6}$ (5%) $\,$ $\,$ C2009) $\,$ C2O99 $\,$ TO9

ALICE-TOF milestones

Akindinov et al, Nuovo Cim. B 124 (2009) 235

← December 2006

end of MRPC production

April 2008 →

last sector completed and installed

← May 2008

cables, pipes and fibres connected

Summer 2008 →

commissioning with cosmic-rays

Total current

current measurements without circulating beams

very stable operations over the years

very low currents, no ageing effects

Efficiency

Efficiency

Time resolution

total time-of-flight resolution of the ALICE TOF detector measured with 1 GeV/c pions from p-Pb collisions (2013) over the full detector

timing performance as promised in PPR

Time resolution

can we do something more? **Improve the calibration** measured with 1.5 GeV/c pions from Pb-Pb collisions (2015) over the full detector

$\Delta t = TOF - t_{exp}(L, p)$

 $t_{\rm exp}$: expected pion time-of-flight (computed numerically) $\sigma(t_{\rm exp}) \sim 2$ ps (negligible)

$TOF = t_{TOF} - t_{start}$

 t_{TOF} : arrival time of the particle (recorded by the detector)

 $\sigma(t_{\text{TOF}}) = \sigma(t_{\text{MRPC}}) + \sigma(t_{\text{FEE}}) + \sigma(t_{\text{calib}})$

 t_{start} (or t_{ev}): start time of the particle (collision time), can be measured (combinatorial algorithm)

 $\sigma(t_{ev}) = 5$ ps (negligible)

timing performance close to test beam

Calibration

fine tuning the time-amplitude (time-slewing) correlations time-over-threshold correction for >150k channels measured with high precision

Calibration

fine tuning the time-amplitude (time-slewing) correlations time-over-threshold correction for >150k channels measured with high precision

Start time

precise event-by-event determination of the collision time

represents a very important ingredient for PID with a TOF systems different methods and/or detectors can be employed

● no start-time measurement

- uncertainty from beam bunch size
	- \blacksquare i.e. ~ 200 ps at LHC

● dedicated start-time system

- i.e. ALICE T0 detector
	- quartz-Cherenkov counter
	- \sim 50 ps for single MIP events
	- \sim 25 ps at higher multiplicity

● self-determined start-time

- combinatorial algorithm
	- use tracks that reach TOF
- $\sigma_{\text{start}} \sim \sigma_{\text{stop}} / \sqrt{N_{\text{tracks}}}$ \circ becomes negligible for large N_{tracks}

Performance

Performance

The CBM time-of-flight project

MRPCs at unprecedented high interaction rates

The CBM time-of-flight project

Au-Au collisions at 10 MHz interaction rate

need TOF detectors with different rate capabilities at different regions particle flux ranging from 0.1 to 100 KHz/cm2

High-rate CBM MRPC2

equipped with low resistive glass (~1010 Ω cm)

the rate capability of MRPC2 meets the requirement of CBM-TOF in the corresponding high-rate area (1-10 kHz/cm²)

Dimension $360 \times 338 \times 26$ mm³ Weight 3.3 kg Gas gap number 4×2 stacks 0.25 mm Gas gap width **Glass dimension** $330 \times 276 \times 0.7$ mm³ Strip dimension 270×7 mm² 3 mm Strip pitch Strip number 32 **Electrodes** low resistive glass

Wang et al., NIM A 713 (2013) 40

FAIR phase-0 programs

FAIR phase-0 is a bridge program until the start of FAIR in 2025

mTOF and eTOF project: installation, commissioning and operation of CBM TOF modules in STAR eTOF upgrade: extend η range for π , K, p ID \rightarrow RHIC-BES (collider and fixed target mode)

STAR eTOF "wheel" full installation in November 2018

time resolution in the order of 85 ps

measured with fast pions

MRPC with eco-friendly gas

searching for new eco-gas mixtures

with low Global Warming Potential and reasonable cost while keeping excellent timing performance and low noise

● the "standard" gas mixtures

- **○** are HFC based
	- mainly $C_2F_4H_2$ (GWP = 1430)
	- and SF_{6} (GWP = 23900)

● several test ongoing

- \circ using Ar/C0₂ mixtures
	- promising, used also in MPGD
	- and cheap
- another possible candidate: HFO-1234ze
	- (tetrafluoropropene), GWP < 1
	- here (ECO) test-beam tested

Baek et al., JINST 14 (2019) 11, C11022 Efficiency(%) $-$ Freon+SF $_{6}$ (5%) 90 **FCO** rrent $\overline{+}$ ECO+CO₂(5%) **80** 0.4 \triangle - ECO+CO₂(10%) 0.35 - ECO+CO₂(15%) **Dark** 0.3 \leftarrow ECO+SF₆(1%) $ECO+SF₆(2%)$ 50 0.25 $|0.2|$ 40 0.15 30 20 0.1 10 0.05 Ω 10 12 14 16 20 18 22 HV(kV)

similar efficiency plateau at 4kV higher operation

low dark current, specially low with $SF₆$

MRPC with eco-friendly gas

searching for new eco-gas mixtures

with low Global Warming Potential and reasonable cost while keeping excellent timing performance and low noise

pure ECO or with CO₂

- **○** slightly worse performance than STD
	- efficiency plateau unstable
	- higher time resolution

• adding SF₆ to ECO

- very similar performance to STD
	- strongly electronegative gas needed

ideas to replace SF₆

- \circ try CF₃I (trifluoroiodomethane)
	- $GWP < 5$
- try 3-component mixtures

very important and promising directions for the future

do not forget also efforts to reduce flow and improve recirculation systems

20 ps with MRPC

a number of R&D projects putting effort in improving performance

high rate capability up to 10 kHz/cm² ultra-high time resolution better than 20 ps

● 24-gap MRPC detector

- **○** 4 stacks each with
	- 6x gas gaps of 160 μm
	- pickup pads between each stack

● compared to the ALICE MRPC

- 2 stacks each with
	- 5x gas gaps of 250 µm

● one expects

- intrinsic time jitter decreases by 2x
	- faster electron velocity
- narrower charge spectrum

very important to have good-enough electronics

test-beam measurements with NINO ASIC + oscilloscope readout

An et al., NIM A 594 (2008) 39

CERN-PS test-beam results $\mathsf{C_2F_4H_2}$ (95%) $\mathsf{SF}_6^{\mathsf{}}$ (5%)

20 ps with MRPC

outstanding results

with room for improvements with better electronics

Summary

● Time-of-Flight systems in HEP experiments

- are an essential part for charged-hadron identification
	- \blacksquare but also for electron identification in combination with dE/dx
- powerful technique (but only viable) up to intermediate momenta

● Multigap Resistive Plate Chamber

- have become the new standard technology for TOF systems
- easy to build, excellent performance and stability of operation
	- developed for the ALICE experiment
	- employed by others: STAR, HADES, FOPI, ...
	- and adopted for the future: CBM, SHIP, SOLID, ...
- several important improvements and R&D studies since their invention
	- high rate capability
	- ultra-high time resolution
	- operation with eco-friendly gas mixtures

● Perspectives for the future

Perspectives

large gaseous TOF arrays can be successfully built and operated at colliders

- excellent performance of **MRPC technology** simple, stable, efficient and reliable detectors intrinsic resolution can be improved (24-gap MRPC prototypes, < 20 ps)
- soon improved front-end (SuperNINO) and TDC readout (picoTDC, SAMPIC) combined electronics with ~10 ps resolution
- calibration of a very large number of channels can be done \sim 15 ps contribution in ALICE-TOF (with \sim 60 ps signals) can be $<$ 10 ps for narrower signals
- putting all together \rightarrow 25 ps 20 ps (intrinsic) + 10 ps (electronics) + 10 ps (calibration)
- what about the **start-time**?

assuming a machine with 5 mm long bunch (e- beam in BNL EIC proposal) \sim 15 ps start-time uncertainty (if not measured)

- room for TOF with sub 30 ps PID performance high-momentum TOF (1.4x wrt. ALICE-TOF momentum reach, 3o K/p up to 7 GeV/c, same dimensions) compact TOF (2x smaller radius, 4x smaller area wrt. ALICE-TOF, same momentum reach)
- applications for **future colliders** (EIC, HL-LHC, FCC)

Perspectives

with 30 ps resolution better than 3σ PID K/π 4 GeV/c p/K 7 GeV/c

or build a TOF system 4x smaller area than ALICE-TOF better than 3σ PID K/π 3 GeV/c p/K 5 GeV/c

END

Trigger

TOF provides triggers for cosmic-ray and UPC physics

Total current

current measurements as a function **charged-particle flux**

tested highest expected flux for Run3

Calibration

fine tuning the time-amplitude (time-slewing) correlations time-over-threshold correction for >150k channels measured with high precision

