

PID options with RPCs

Roberto Preghenella

Istituto Nazionale di Fisica Nucleare, Bologna

RD51 Workshop on Gaseous Detector Contribution to PID 16 February 2021

preghenella@bo.infn.it

Precision timing

• always been a prominent topic in HEP instrumentation

- trigger applications
- time-of-flight particle identification

• resistive plate chambers

- widely used for large-area applications (in place of scintillators)
- MRPC achieved < 50 ps time resolution

• silicon sensors

- recently very popular for timing in HEP
- HL-LHC for pile-up rejection
- rapid progress for consumer applications (imaging, LIDAR, 3D scanners)

Precision timing

• always been a prominent topic in HEP instrumentation

- trigger applications
- time-of-flight particle identification

• resistive plate chambers

- widely used for large-area applications (in place of scintillators)
- MRPC achieved < 50 ps time resolution

silicon sensors

- recently very popular for timing in HEP
- HL-LHC for pile-up rejection

rapid progress for consumer applications (imaging, LIDAR, 3D scanners)

but today we are talking about gaseous detectors

no space for discussion of silicon sensors

Particle identification

with a TOF detector that measures the time-of-flight

of a particle with momentum p flying over a trajectory length L

$$m^{2} = \frac{p^{2}}{c^{2}} \left(\frac{c^{2}t^{2}}{L^{2}} - 1\right)$$

 $t_0 = 0$

TOF

p, L

same δm at twice p requires 4-fold better δt (or 4-fold longer L) time-of-flight is a viable technique at **low/intermediate p**

10% resolution on mass for a 5 GeV/c proton ($\gamma^2 = 40$) requires 0.25% resolution on time-of-flight assuming L = 5 m, t = 16.97 ns \Rightarrow t ~40 ps

Particle identification

capability of a TOF detector is better quantified

by the time-of-flight difference of two particles with unequal mass m_1 and m_2 flying with the same momentum p over the same trajectory length L (assuming $\beta\gamma > 1$)

$$t_1 - t_2 = \frac{L}{2c} \left(\frac{m_1^2 c^2 - m_2^2 c^2}{p^2} \right)$$
 with the separation power defined as
$$n_\sigma = \frac{t_1 - t_2}{\delta t}$$

a 5 GeV/c proton reaches the TOF detector which measures a time-of-flight of t = 16.97 ns over a trajectory of L = 5 m to be able to tell that this is not a kaon with better than 99% CL (3σ) the time-of-flight resolution must be better than δt = 70 ps

Particle identification

Parallel chambers

Parallel Plate Chamber

- one of the first parallel chambers, realised around 1950
- \circ needed external circuit to quench the discharge \rightarrow limited rate capability

Resistive Plate Chamber

- invented in 1980 by Santonico & Cardarelli
- \circ replaces conductive plates with resistive plates \rightarrow self-quench, localised V drop
- \circ 2 mm gas-gap, good time resolution ~ 1 ns

Pestov Counter

- \circ 100 µm gas-gap, excellent time resolution ~ 50 ps
- non-commercial glass, high-pressure operation ~ 12 atm

Multigap Resistive Plate Chamber

- invented in 1996 by Williams within the LAA Project
- instead of one small gap at high pressure, many gaps at 1 atm

From the RPC to the MRPC

• electron avalanche

- grows according to Townsend law, N = N₀ $e^{\alpha x}$
- detectable signals produced by avalanches that cross full gas-gap
- only ionisation clusters produced close to cathode are important for signal generation
- only few clusters take part in signal production

• time jitter

- H.V.

Ε

+ H.V.

- is due to how avalanche develops initially
- ο $\sigma_{t} = 1.28 / (\alpha \eta) v$

Riegler et al., NIM A 500 (2003) 144

reduce jitter by

- increasing Townsend coefficient
- increasing electron drift velocity
- have simultaneous signals from many avalanches
- basically increase the E field

From the RPC to the MRPC

• increase gas gain

- such that avalanche produces detectable signal immediately
- this needs an extraordinarily high gas gain
- we will have streamers, sparks, ...

• need a way to stop avalanche growth

- add barriers within the gas gap to stop avalanche development
- must be invisible to the fast induced signal
- use resistive plates

• the Multigap RPC was born

Cerron Zeballos et al., NIM A 374 (1996) 132

Multigap Resistive Plate Chamber

• stack of equally-spaced resistive plates

- with voltage applied to external surfaces
- all internal plates electrically floating
- pickup electrodes on external surfaces
 - resistive plates transparent to fast signal
- internal plates

take correct voltage

- initially due to electrostatics
- but kept at correct voltage by flow of electrons and positive ions
- feedback principle that dictates equal gain in all gas gaps

this detector is cheap, easy to build and can cover large areas

Multigap Resistive Plate Chamber

the Multigap RPC has been a game-changer technology

for precision timing applications \rightarrow Time-of-Flight detectors

CERN-LHCC-2000-013 09/03/2011

11

The ALICE experiment

a dedicated general-purpose detector for heavy-ion physics at the LHC

- designed to cope with very high multiplicities
 - \circ dN_{ch}/dη \leq 8000
 - 3D tracking with TPC
- low-p_T tracking
 - moderate B = 0.5 T
 - thin materials
- employs all known
 PID techniques
 - dE/dx in silicon and gas
 - Cherenkov imaging
 - transition radiation, muon filters, ...
- among which a large TOF array

ALICE, JINST 3 (2008) S08002 ALICE, J.Phys.G 41 (2014) 087001

The ALICE Time-Of-Flight detector

designed for hadron identification in Pb-Pb collisions

a detector that had to satisfy several demanding requirements for physics

- large coverage
 - \circ ~ 140 m²
- high efficiency
 - o > 95 %
- good time resolution
 - **100 ps**
- high granularity
 - \circ ~ 10⁵ channels

Similarly the STAR experiment

needed a Time-of-Flight detector

roughly half of the produced particles could not be directly identified by the TPC

scintillator-based TOF

- with Mesh Dynode PMT
- could meet the requirements
- but
 - large size of PMTs
 - enormous cost of PMTs
- very expensive system
 - 50 M\$ for 10% occupancy
- think about ALICE-TOF
 - \circ STAR-TOF area ~ 50 m²

the advent of MRPC was providential: use a gaseous detector

to satisfy the requirements at a reasonable cost

Full-size STAR-TOF prototype

prototypes constructed and installed in the experiment (2002-2005)

STAR-TOF MRPC tested at CERN in 2001 (a variant of the MRPC developed for ALICE-TOF) wide voltage plateau with > 95% efficiency time resolution below 75 ps TOFr: first full-sized prototype a "tray" with 30 MRPCs $-1 < \eta < 0$ $1/60^{th}$ of 2π

Full-size STAR-TOF prototypes

first physics results from a MRPC-based TOF system

on hadron p_{τ} distributions & the Cronin effect in pp and d-Au collisions

Full-size STAR-TOF prototypes

TOF also works as an effective electron ID detector

in combination with TPC dE/dx

The ALICE Time-Of-Flight detector

designed for hadron identification in Pb-Pb collisions

designed for $3\sigma \pi/K$ separation up to 2.5 GeV/c and p/K up to 4.0 GeV/c

• Design

- cylindrical surface
- \circ 3.7 < r < 4.0 m from beam line
- \circ 2 π full azimuthal acceptance
- \circ $|\eta| < 0.9$ polar acceptance
- \circ 18-fold segmentation in ϕ
- 5-fold segmentation in z
- <u>1638 MRPC</u> strip detectors
- pointing geometry

The ALICE-TOF Multigap RPC

double-stack design

two stacks of resistive plates 10x 250 μm gas gaps 120 x 7.4 cm² active area

highly-segmented readout

96 pickup pads 3.5 x 2.5 cm²

Front-end electronics

based on the NINO ASIC chip

low power consumption

0.25 µm CMOS

- differential amplifier + discriminator
- input charge measurement via ToT

ALICE-TOF front-end card

Anghinolfi et al, NIM A 533 (2004) 183

front-end control card

Readout electronics

housed in water-cooled custom VME crates

designed to work in B = 0.5 T

TDC Readout Module

multi-hit / multi-event design based on HPTDC ASIC chip (24.4 LSB)

Data Readout Module

interface to DAQ/trigger

Local Trigger Module

local trigger + FEE monitor/setup

Clock Distribution Module

high-quality clock distribution to TRMs

Test beam performance

MRPC mass production + final electronics

 $C_2H_2F_4$ (90%) i- C_4H_{10} (5%) SF_6 (5%)

ALICE-TOF milestones

Akindinov et al, Nuovo Cim. B 124 (2009) 235

← December 2006

end of MRPC production

April 2008 \rightarrow

last sector completed and installed

← May 2008

cables, pipes and fibres connected

Summer 2008 \rightarrow

commissioning with cosmic-rays

Total current

current measurements without circulating beams

very stable operations over the years

very low currents, no ageing effects

Efficiency

Efficiency

Time resolution

total time-of-flight resolution of the ALICE TOF detector measured with 1 GeV/c pions from p-Pb collisions (2013) over the full detector

timing performance as promised in PPR

Time resolution

can we do something more? Improve the calibration measured with 1.5 GeV/c pions from Pb-Pb collisions (2015) over the full detector

$\Delta t = TOF - t_{exp}(L,p)$

t_{exp}: expected pion time-of-flight (computed numerically) $\sigma(t_{exp}) \sim 2 \text{ ps}$ (negligible)

TOF = t_{TOF} - t_{start}

 t_{TOF} : arrival time of the particle (recorded by the detector)

 $\sigma(t_{\text{TOF}}) = \sigma(t_{\text{MRPC}}) + \sigma(t_{\text{FEE}}) + \sigma(t_{\text{calib}})$

t_{start} (or t_{ev}): start time of the particle (collision time), can be measured (combinatorial algorithm)

 $\sigma(t_{ev}) = 5 \text{ ps}$ (negligible)

timing performance close to test beam

Calibration

fine tuning the time-amplitude (time-slewing) correlations time-over-threshold correction for >150k channels measured with high precision

Calibration

fine tuning the time-amplitude (time-slewing) correlations time-over-threshold correction for >150k channels measured with high precision

Start time

precise event-by-event determination of the collision time

represents a very important ingredient for PID with a TOF systems different methods and/or detectors can be employed

• no start-time measurement

- uncertainty from beam bunch size
 - i.e. ~ 200 ps at LHC

dedicated start-time system

- i.e. ALICE T0 detector
 - quartz-Cherenkov counter
 - ~ 50 ps for single MIP events
 - ~ 25 ps at higher multiplicity

self-determined start-time

- combinatorial algorithm
 - use tracks that reach TOF
- $\sigma_{start} \sim \sigma_{stop} / \sqrt{N_{tracks}}$ • becomes negligible for large N_{tracks}

Performance

Performance

The CBM time-of-flight project

MRPCs at unprecedented high interaction rates

The CBM time-of-flight project

Au-Au collisions at 10 MHz interaction rate

need TOF detectors with different rate capabilities at different regions particle flux ranging from 0.1 to 100 KHz/cm2

High-rate CBM MRPC2

equipped with low resistive glass (~10¹⁰ Ω cm)

the rate capability of MRPC2 meets the requirement of CBM-TOF in the corresponding high-rate area (1-10 kHz/cm²)

			105 -
Dimension	$360 \times 338 \times 26 \text{ mm}^3$		100
Weight	3.3 kg	iy [%]	95
Gas gap number	4×2 stacks	ficienc	90
Gas gap width	0.25 mm	ter ef	80
Glass dimension	$330 \times 276 \times 0.7 \text{ mm}^3$	Cour	75 -
Strip dimension	$270 \times 7 \text{ mm}^2$		70 65
Strip pitch	3 mm		60
Strip number	32		1
Electrodes	low resistive glass		

110 180 HZDR: e@30MeV (Non-uniform irradiation) HZDR: e@30MeV (Non-uniform irradiation) 160 HZDR2011 PMRPC(E=109kV/cm) HZDR2011 SMRPC(E=102kV/cm) 140 [bs] :0,0 Đ. resolution 120 Cell 80 HZDR2011 PMRPC(E=109kV/cm) HZDR2011 PMRPC(E=109kV/cm) HZDR2011 SMRPC(E=103kV/cm) 60 HZDR2011 SMRPC(E=108kV/cm) 0 40 100 100 10 Flux [kHz/cm²] Flux[kHz/cm²]

Wang et al., NIM A 713 (2013) 40

FAIR phase-0 programs

FAIR phase-0 is a bridge program until the start of FAIR in 2025

mTOF and <u>eTOF project</u>: installation, commissioning and operation of CBM TOF modules in STAR <u>eTOF upgrade</u>: extend η range for π , K, p ID \rightarrow RHIC-BES (collider and fixed target mode)

STAR eTOF "wheel" full installation in November 2018

time resolution in the order of 85 ps

measured with fast pions

MRPC with eco-friendly gas

searching for new eco-gas mixtures

with low Global Warming Potential and reasonable cost while keeping excellent timing performance and low noise

• the "standard" gas mixtures

- \circ are HFC based
 - mainly $C_2F_4H_2$ (GWP = 1430)
 - and SF₆ (GWP = 23900)

several test ongoing

- using Ar/C0₂ mixtures
 - promising, used also in MPGD
 - and cheap
- o another possible candidate: HFO-1234ze
 - (tetrafluoropropene), GWP < 1
 - here (ECO) test-beam tested

Baek et al., JINST 14 (2019) 11, C11022 Efficiency(%) - Freon+SF₆(5%) 90 - FCO rrent ➡ ECO+CO₂(5%) 80 0.4 -▲- ECO+CO₂(10%) 0.35 ... ECO+CO₂(15%) Dark \leftarrow ECO+SF₆(1%) 0.3 $ECO+SF_{c}(2\%)$ 50 0.25 0.2 40 30 0.15 20 0.1 0.05 10 0 10 12 14 16 20 18 27 HV(kV)

similar efficiency plateau at 4kV higher operation

low dark current, specially low with SF₆

MRPC with eco-friendly gas

searching for new eco-gas mixtures

with low Global Warming Potential and reasonable cost while keeping excellent timing performance and low noise

• pure ECO or with CO₂

- slightly worse performance than STD
 - efficiency plateau unstable
 - higher time resolution

adding SF₆ to ECO

- very similar performance to STD
 - strongly electronegative gas needed

ideas to replace SF₆

- try CF₃I (trifluoroiodomethane)
 - GWP < 5
- try 3-component mixtures

very important and promising directions for the future

do not forget also efforts to reduce flow and improve recirculation systems

20 ps with MRPC

a number of R&D projects putting effort in improving performance

high rate capability up to 10 kHz/cm² ultra-high time resolution better than 20 ps

• 24-gap MRPC detector

- 4 stacks each with
 - 6x gas gaps of 160 μm
 - pickup pads between each stack

• compared to the ALICE MRPC

- 2 stacks each with
 - 5x gas gaps of 250 μm

one expects

- intrinsic time jitter decreases by 2x
 - faster electron velocity
- narrower charge spectrum

very important to have good-enough electronics

test-beam measurements with NINO ASIC + oscilloscope readout

An et al., NIM A 594 (2008) 39

CERN-PS test-beam results $C_2F_4H_2$ (95%) SF₆ (5%)

20 ps with MRPC

outstanding results

with room for improvements with better electronics

Summary

• Time-of-Flight systems in HEP experiments

- are an essential part for charged-hadron identification
 - but also for electron identification in combination with dE/dx
- o powerful technique (but only viable) up to intermediate momenta

Multigap Resistive Plate Chamber

- have become the new standard technology for TOF systems
- easy to build, excellent performance and stability of operation
 - developed for the ALICE experiment
 - employed by others: STAR, HADES, FOPI, ...
 - and adopted for the future: CBM, SHIP, SOLID, ...
- several important improvements and R&D studies since their invention
 - high rate capability
 - ultra-high time resolution
 - operation with eco-friendly gas mixtures

• Perspectives for the future

Perspectives

large gaseous TOF arrays can be successfully built and operated at colliders

- excellent performance of MRPC technology simple, stable, efficient and reliable detectors intrinsic resolution can be improved (24-gap MRPC prototypes, < 20 ps)
- soon improved front-end (SuperNINO) and TDC readout (picoTDC, SAMPIC) combined electronics with ~10 ps resolution
- calibration of a very large number of channels can be done ~15 ps contribution in ALICE-TOF (with ~60 ps signals) can be < 10 ps for narrower signals
- putting all together → 25 ps 20 ps (intrinsic) + 10 ps (electronics) + 10 ps (calibration)
- what about the **start-time**?

assuming a machine with 5 mm long bunch (e- beam in BNL EIC proposal) ~15 ps start-time uncertainty (if not measured)

- room for TOF with sub 30 ps PID performance high-momentum TOF (1.4x wrt. ALICE-TOF momentum reach, 3o K/p up to 7 GeV/c, same dimensions) compact TOF (2x smaller radius, 4x smaller area wrt. ALICE-TOF, same momentum reach)
- applications for **future colliders** (EIC, HL-LHC, FCC)

Perspectives

Ш

П

with 30 ps resolution better than 3σ PID K/ π 4 GeV/c p/K 7 GeV/c

or build a TOF system 4x smaller area than ALICE-TOF better than 3₀ PID K/π 3 GeV/c p/K 5 GeV/c

END

Trigger

TOF provides triggers for cosmic-ray and UPC physics

Total current

current measurements as a function charged-particle flux

Calibration

fine tuning the time-amplitude (time-slewing) correlations time-over-threshold correction for >150k channels measured with high precision

