

Time of flight measurements

Michele Gallinaro LIP Lisbon February 16, 2021

✓ Precision timing and performance
 ✓ Current and future experiments
 ✓ Challenges and prospects

RD51 workshop on "on Gaseous Detector Contributions to PID"

ToF for Particle ID: Why?

Beam background
 – Pileup rejection

CMS Experiment at the LHC, CERN Data recorded: 2018-Apr-17 11:26:32.973824 GMT Run / Event / LS: 314475 / 10482774 / 11

CMS event display

Number of collisions per bunch crossing (pile-up):
Phase I LHC: ~40 collisions
High Luminosity LHC: 140-200 collisions

Challenges and technologies

- Technologies:
 - Silicon, diamond, photodetectors, and gaseous detectors
- Challenges:
 - Large vs small systems
 - Aging effects
 - Rate capabilities
- Several contributions to time resolution

$$\sigma_{TOF}^{2} = \sigma_{t_{0}}^{2} + \sigma_{t_{1}}^{2} = \sigma_{t_{0}}^{2} + \sigma_{Intr}^{2} + \sigma_{Elec}^{2} + \sigma_{Clock}^{2} + \sigma_{Cal}^{2}$$

intrinsic det. resolution

MIP Timing Detector @CMS

- High precision time measurement of MIPs
 - 30-40 ps at start, degrading to <60ps at 3000 fb⁻¹
 - Provide track-vertex association
 - Improve sensitivity to slow particles, add particle ID capabilities, etc.

MIP Timing Detector

- Barrel Timing Layer (BTL):
 - Arrays of LYSO crystal bars with dual-end SiPM readout
 - Two meaurements per hit (improves resolution)
 - Mounted inside the Tracker Support Tube (independent cooling)
- Endcap Timing Layer (ETL):
 - LGAD modules bump-bonded to ASIC
 - Two layers (improves resolution and redundancy)

Timing detector @ATLAS

CERN-LHCC-2020-007

High Granularity Timing Detector (HGTD)

- Coverage: 2.4<|η|<4.0
- Active area 6.3m², 3.6M ch
- Design based on 1.3x1.3mm² Si pixels optimized for <10% occupancy
- Rad hard up to 5x10¹⁵n_{eq}/cm², 4.7MGy

(a) First layer

(b) Second layer

PU mitigation with ToF

- Time-tagging tracks with a resolution of ~30-40 ps
 - 4D vertex reconstruction
 - Track-vertex association
- Reduce effective PU to the LHC Run2 level
 - Slice beam spot (time spread 180 ps)

Vertices merged in 3D,

Particle reconstruction

- Improve particle reconstruction/ID
 - Increase b-tagging efficiency
 - Increase photon and lepton Id, efficiency and isolation
 - Improve missing transverse momentum resolution
 - Reduce fake jet reconstruction
- 10%-20% gain in S/B in many Higgs decay channels

MTD: Time resolution

FE board

(DC ground)

- Time resolution: ~30-40ps@start
- Dedicated on-detector electronics (TOFHIR and ETROC)
- Different technologies in Barrel/Endcap:
- LYSO crystals (BTL):
 - 3x3x57mm³ readout by two SiPMs
- LGAD: Low Gain Avalanche Diodes (ETL)
 - Si pixels 1.3x1.3mm², 2x4cm² module bonded to ASIC

SiPMs

SiPMs as photosensors

- Compact, fast (single photon resolution ~100ps), insensitive to magnetic fields
- Optimal cell size 15µm (balance btw radiation tolerance and photon detection efficiency
- PDE: 20-40% at 420nm
- Gain: 1.5-4x10⁵
- Drawback: dark current noise due to radiation damage

end of operation

ent	Integrated luminosity (fb-1)	Number of p.e.	SiPM gain	DCR (GHz)
า	0	9500	3.8 × 10⁵	0
	500	9000	2.9 × 10 ⁵	20
	1000	8000	2.5 × 10 ⁵	30
	2000	7000	1.9 × 10 ⁵	45
tion 🗕	3000	6000	1.5 × 10 ⁵	55

LGADs

- Gain is key ingredient to good time resolution
- High field obtained by adding an extra doping layer
 - E~300kV/cm, close to breakdown voltage
 - Exploit Carbon implant to extend lifetime
- Signal yield >10fC up to 1.5x10¹⁵n_{eq}/cm²
- Damage due to radiation:
 - Electric field decrease → compensate with higher bias
 - Increased leakage current
 - Doping creation/removal

E field Traditional Silicon detector

Ultra fast Silicon detector E field

Precision Proton Spectrometer

CERN-LHCC-2014-021

- Aims at measuring the surviving scattered protons on both sides of CMS in standard running conditions
- Tracking and timing detectors inside the beam pipe at ~210m from IP5
- Close (~2mm) approach to LHC beams inside movable "Roman Pot" vessels

Time reconstruction

- A major background due to PU protons from other collisions in the same bunch crossing
 - PU~40-50 at LHC Run2
- Can be mitigated by precisely measuring the proton arrival time
 - For signal, ∆t of the 2 protons is correlated with longitudinal vertex position measured in central detector

Timing detectors

Time-of-flight measurement to reject background in the high-pileup of normal LHC running (uncorrelated proton tracks)

- Desired time resolution $20ps \Rightarrow 4mm$ (in z)
- Technology: diamond (rad-hard)
- Sustain high radiation levels

– For 100/fb, proton flux up to 5x10¹⁵cm⁻²

Diamond detectors

JINST12(2017)P03007

- Diamond detectors
 - single crystal CVD diamonds
 - 4 planes per station
 - pixels of different sizes
 - segmentation through crystal metallization
- Single plane resolution ~80ps
- Radiation hard

Double diamond layer

JINST12(2017)P03026

- Connected "sandwich" with two diamond sensors
- Beam tests in 2016/2017
- Performance improved (a factor of 1.7 wrt SD)
 - larger signal amplitude dominant over extra capacitance
- With 4 diamond sandwich-planes could reach 25 ps

PPS: Time measurement in Run2

CERN-CMS-DP-2019-034

- Timing detectors installed in Run2 to measure proton ToF
 - Equipped with diamond detectors
 - One RP on each side, 4 planes in each RP (2DD+2SD)
- Reasonable efficiency maintained in 2018
- Expected 50ps/plane not yet reached
- Moderate loss of timing resolution from early to late 2018
 - Due to damage on the crystal and electronics (pre-amp, etc)

PPS at HL-LHC

CERN-CMS-NOTE-2020-008

Plan for an upgraded PPS detector at HL-LHC

- 4 possible locations in the HL-LHC tunnel
 - Roman Pots at 196, 220, 234m (+420m) from IP
- Fluence at ~1.5x10¹⁶p cm⁻² (~6x10¹⁵ n_{eq}cm⁻²)

Significantly larger acceptance than in Run2/3

PPS at HL-LHC

- Synergies with central CMS upgrades
- PPS pixel tracking detectors already aligned with Phase-II tracker upgrade
- Several options for timing detectors: diamonds, LGAD (as in MTD-ETL)

Figure 47: Time resolution required per spectrometer arm to resolve the mean vertex distance at a position z (in units of the longitudinal vertex width σ_v) from the IP centre. Four different pileup multiplicities are shown: $\mu = 50$ (LHC Run 2), 100, 140 (nominal HL-LHC performance), and 200 (ultimate HL-LHC performance). Left: for standalone PPS timing. Right: combining the PPS timing with the MTD system, selecting a time-slice of ± 50 ps around the central bunch crossing time.

TORCH @ LHCb

• Precise ToF measurement over a large area (~30m²)

- Time Of internally Reflected Cherenkov (TORCH) light
- Exploit prompt Cherenkov light produced by charged particles
- Single photon rates >10MHz/cm², integrated charge >5C/cm²
- Particle ID (K- π separation) up to a momentum of 10GeV

TORCH design

- How to achieve 10-15ps time resolution?
- Cherenkov light: use quartz as source of fast signal DIRC-style detector with photon detector near edge
- Quartz of 1cm thickness enough to produce ~30 detected photons/track
 → require 70ps resolution/photon
- Spread arrival time due to different paths \rightarrow need fine segmentation

TORCH performance

NIMA 952(2020)161692

Arrival time [ns]

З

- MicroChannel Plate (MCP) photon detectors
 - spatial resolution 6mmx0.4mm
 - ALD extends lifetime >5C/cm²
- Approx 200k channels
- **Readout NINO+HPTDC**

Particle ID at ALICE

JINST 14(2019)C06023, J.Phys.G 39 (2012) 123001

- Measure velocity (ToF) and p (tracking) → mass
- High multiplicities expected
 - highly segmented ToF array

3.7 m path length

K/p time separation

Momentum [GeV/c]

- operate in magnetic field
- reasonable cost

 π/K time separation

1000

900

800

700 600 500

400

0

time difference [ps]

low amount of material

2

See presentation by R.Preghenella

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:30:46 Fill : 1482 Run : 137124 Event : 0x00000000D3BBE693

need time resolution of 100ps or 50ps

M. Gallinaro - "ToF measuremens" - RD51 workshop, Feb. 16, 2021

5

ALICE ToF

- PID: combination of ToF and dE/dx
- Multigap RPC (MRPC)
 - Many small gaps so that avalanches grow rapidly and detectable signals are generated
 - small gaps (250 μ m) give better timing
 - space-charge effects inhibit the growth of avalanches
- Approx 150k channels

ALICE ToF performance

- 10-gap MRPC
 - $\sigma_t \sim 60 \text{ps} @ 500 \text{Hz/cm}^2$
 - Efficiency ~100%
- For HL-LHC, 20-gap MRPC
 - Aim for ~20ps at 50kHz/cm²

ToF @ SHIP

arXiv:1504.04956,CERN-SPSC-2019-010

- SHiP: Search for HIdden Particles
 - Long-lived exotic particles, rare decays
- Two ToF options (~50m²):

20

15

5

90

95

100

Efficiency (%)

105

Entries / 1 %

- Scintillator bars read by SiPM arrays
 - 1.7m bars, 6cmx1cm, 1.1k ch.
- Alternative option: timing RPCs (tRPC)
 - Sensitive module inside plastic box
 - Multi-gap RPC (12 gaps, 300µm)
 - Test beam shows high efficiency, $\sigma_t \sim 54$ ps

Fast timing with Si detectors

- How to reach "10ps range" with Si detectors
- Exploit "in-silicon" charge amplification
 - Geiger mode (as in gas RPC)
 - Linear mode (Low Gain Avalanche Detectors)

- Separate collection of charge from signal gain
- Fast drift, large signals, low noise
 - Collect electrons fast \Rightarrow thin
 - Large signals \Rightarrow amplified holes
 - Small C, small i_{leak}, low noise \Rightarrow small electrodes

Low-gain vs high-gain

- Options for avalanche diodes
- Different amplification approaches
- "thin" layer: a few μm of depleted region
 - Small gain region near the surface (longer drift)
- "deep-depleted": depletion region ~40µm
 - -High-gain region deeper
 - -shorter drift

Low-gain vs high-gain

Options for avalanche diodes

- Different amplification approaches
- "thin" layer: a few μm of depleted region
 - Small gain region near the surface (longer drift)
- "deep-depleted": depletion region ~40µm
 - -High-gain region deeper
 - -shorter drift

Electric field

E field comparison for APD and LGAD (140um thick)

APD=200um thick, bulk doping-1.4e14 and 1.8e14cm-3,

LGAD

NIMA 850(2017)83

- MTD: two layers of Si sensors 1.6<|η|<3.0
- Fast timing from Si with thin depletion region, $\sim 50 \mu m$ to reduce drift time
 - fast signal ~0.5ns
 - internal gain O(x10-30)

a) Traditional Silicon detector

b) UFSD

APD: Silicon Detectors

- Si sensors with amplification
 - Sensitivity to MIP in Si devices with internal amplification
- R&D on high gain APDs with field shaping to achieve fast timing
 - high gain devices (G~500)
 - "deep-depleted" technology
- Large S/N~100

APD: Silicon Detectors

NIMA 949(2020)162930

- Si sensors with amplification
 - Sensitivity to MIP in Si devices with internal _ amplification
- R&D on high gain APDs with field shaping to achieve fast timing
 - high gain devices (G~500)
 - "deep-depleted" technology
- Large S/N~100

20^{×10⁻¹²}

18

16

14

12

10

0⊾ 40

60

Jitter [s]

Photon or charged

particle

20 µm

40 µm

Passivation layer

Diffusion

p-region

Depleted p-region

0.1 um

MCP PMT

NIMA 960(2020)163592

- Microchannel Plates can achieve best time resolution
- Better than 10ps in test beam

MCP: Challenges

JPhys 1498(2020)012013

- S/N ratio crucial to time resolution
- Large total charge may cause large afterpulsing rates (due to ion-feedback)
 - After-pulses get worse at higher gain
- Multi-channel MCPs
 - Cross-talk btw pixels, charge sharing, ringing effects
- Problems relevant for use in experiments operating at high rates

PICOSEC Micromegas

NIMA 903(2018)317

Cerenkov radiator+Micromegas

- photoelectrons emitted simultaneously
 by the photocathode
- CsI photocathode on a thick 3mm
 MgF₂ window

Two component signal: e-peak + ion-tail

- Cerenkov radiator to produce synchrounous photons
- Short drift to reduce jitter

PICOSEC Micromegas (cont.)

NIMA 903(2018)317

- Fast MCP used as t₀ reference (<10ps resolution)
- σ_t~24ps with 150GeV muons, 76ps with single pe in laser tests (N_{pe}~10)
- Time resolution improves with higher drift field

Further developments

NIMA 903(2018)317

- Resistive readout: employ resistive strips to limit effect of discharges
- Multipad readout: achieved σ_t~32ps for signal shared on 3 pads
- Photocathode lifetime: against discharges and ion feedback to increase photocathode lifetime. Different materials and protective layers under study

See presentation by A. Utrobicic

LAPPD: Large areas

arXiv:1603.01843, arXiv:1909.10399

- Large Area Picosecond Photo Detectors
- MCP based on planar geometry photodetector
- Design of 20x20cm² modules, gain >10⁷, nonuniformity<15%, time resolution<50ps for single photons, spatial resolution 700μm

Fast timing at 20-30ps

- Good progress in small single-pixel devices
- More difficult in larger systems

$$\sigma_{time} \sim t_{risetime}/(S/N)$$

- Possible to obtain a good time resolution with large S/N ratio
 - for $t_{risetime}\text{=}$ 200ps \rightarrow need S/N~10 to get to 20ps
 - for slower risetime ~2ns, need S/N~100
- Many other effects also contribute (electronics, chromatic effects, #of pe, transit time, reference t₀, stability of clock system, etc)

M. Gallinaro - "ToF measuremens" - RD51 workshop, Feb. 16, 2021

Time resolution, rates, aging

NIMA 939(2011)144, NIMA 876(2017)42

- MCPs currently provide best time resolution
- Micromegas gas detectors can reach 24ps
- High rates: Stable operation with MCPs to 200-300kHz/cm²
- Aging: Expected radiation at ATLAS/CMS is challening (~4x10¹⁵ n_{eq}/cm² and ~4MGy=400MRads)
- Large areas, complex systems: current tests w/ few pixels, small, less complex

Summary

- ToF measurements are key to particle ID
- Precise time determination
- Vast progress in many areas
 - Synchronous signal, high gain, thin drift, etc.
 - Across different technologies
- Several challenges (aging, rates, large areas, etc.)
- Average distance between vertices at z=0:
 - 1mm for HL-LHC (140 pileup)
 - 125µm for FCC-hh (1000 pileup)

Thank you!

Questions?

Many thanks to Eraldo Oliveri for useful discussions and various inputs

LYSO crystals

- Lutetium-yttrium orthosilicate crystals activated with cerium (LYSO:Ce) as scintillator
 - o Excellent radiation tolerance
 - Dense (>7.1 g/cm3): a MIP deposits ~4.2 MeV including impact angle (0.86 MeV/mm)
 - Bright: light yield (LY) ~40k photons/MeV.
 - $\circ~$ fast rise time 100 ps and decay time ~40 ns

0.08 mm ESR

reflective foils

Radiation at HL-LHC

- Technology choices are driven by radiation and cost
 - BTL: LYSO + Silicon Photomultipliers (SiPM)
 - ETL: Low Gain Avalanche Detectors (LGAD)

Diamonds@PPS: Test beam

CERN-CMS-NOTE-2020-007

- Single crystal scCVD diamond sensors operated during Run2
- Sensors exposed to highly non-uniform proton radiation, fluence ~5x10¹⁵p cm⁻² (~2x10¹⁵ n_{eq}cm⁻²)
- Test beam in 2019

