dE/dx, classical and with cluster counting

A brief review of particle identification in gaseous detectors

Outline

- some basics and fundamental problems of dE/dx measurements
 - Bethe-Bloch, clusters and all that
 - resolution, particle separation power
- the classical way: dE/dx by charge measurement
- the alternative way: dE/dx by cluster counting
 - cluster counting in time
 - In cluster counting in 2D with micropattern detectors

Particle ID with dE/dx at e⁺e⁻ colliders and elsewhere

QCD

- inclusive hadronic particle spectra (pions, kaons, protons)

Heavy flavour physics

- b-tagging (electrons from semi-leptonic b-decays)
- c-tagging, D meson spectroscopy (kaon/pion separation)

Tau physics

hadronic branching ratios, strange spectral functions

Searches

- heavy charged long-lived/stable tracks (SUSY)
- free quarks
- magnetic monopoles

RD51 Workshop on Gaseous Detector Contributions to PID - 17 February 2021

Michael Hauschild - CERN, page 3

Bethe-Bloch Calculations...

...are difficult, different models exist

- Landau-Sternheimer calculation
- Bethe-Sternheimer calculation
- Allison-Cobb Monte Carlo Ann. Rev. Nucl. Sci., 30 (1980) 253

Level of (dis)agreement: ~3% in relativistic rise

Common problem

→ what E_{cut} to be used? What's E_{cut} at all?

The cut-off Energy (E_{cut})

- Tracking detectors usually DON'T measure the full energy loss of a particle!
- Secondary electrons with sufficient energy may escape from track, e.g. to adjacent drift cell, pad etc.
 - may be recognized as separate hit, not associated to track
 - detectors measure **RESTRICTED** energy loss instead of full energy loss
- Cut-off energy E_{cut} defines maximum energy of an electron still associated to a track
 - depends on detector geometry, double hit resolution, magnetic field, diffusion and more
 - → typical E_{cut} ~a few keV corresponding to some 100 µm – 1 mm range

CSDA = Constant Slowing Down Approximation)

Michael Hauschild - CERN, page 5

E_{cut} **Dependence**

- E_{cut} is difficult to determine, basically a free parameter
- Impossible to make calculations of Bethe-Bloch function to percent level or even better
 - → results depend on E_{cut} a lot

relativistic rise variation up to 50%

Empirical parameterization used in practice

dE/dx Parameterization

Parameterization usually by fit to data (various functional forms)

fully empirical (any Polynomials), semi-empirical (Bethe-Bloch + parameters)

Use of dE/dx in physics analysis requires

- good dE/dx parameterization and good estimate of dE/dx resolution
- for any track in question: calculate X² probabilities for each particle species (typically e, μ, π, K, p)

$$\mathbf{X}^{2}(\mathbf{e},\mathbf{\mu},\mathbf{\pi},\mathbf{K},\mathbf{p}) = \begin{bmatrix} \frac{dE/dx_{measured} - dE/dx_{(e,\mu,\pi,K,p)_{predicted}}}{\sigma (dE/dx)} \end{bmatrix}$$

Particle Separation Power

Important for physics ٠

- particle separation power in relativistic rise

separation power =

- dE/dx resolution is NOT important!
- need to optimize separation power (if possible)
- Higher pressure reduces separation in relativistic rise .
- **Optimal separation power** at 3 - 4 bars
 - also less diffusion, but...
 - pressure vessel needed...

dE/dx (keV/cm

3.5

2.5

1.5

10 ⁻¹

1

10

separation

 10^{2}

10 p (GeV/c)

RD51 Workshop on Gaseous Detector Contributions to PID – 17 February 2021

further improve

separation power

Particle Separation Power

• Typical (average) particle separation power at LEP

- \Rightarrow e/ π > 2 σ up to 12...14 GeV
- $-\pi/K > 2\sigma$ up to 8...20 GeV (max. 2.5 3.5 σ)
- \rightarrow p/K always below 2 σ (max. 1 1.7 σ)

Energy Loss by Ionization (brief reminder)

Primary number of ionizations per unit length is Poissondistributed

- typically ~30 primary interactions (ionization clusters) / cm in gas at 1 bar
- However, primary electrons sometimes get large energies
 - can make secondary ionization
 - can even create visible secondary track ("delta-electron")
 - large fluctuations of energy loss by ionization

Total ionization = primary + secondary ionization

- Typically: total ionization = 3 x primary ionization
 - on average ~ 90 electrons/cm

Primary ionization

Cluster Size Distributions

Probabilities (%) to create N_{el} electrons

less multi-electron clusters in Helium (better!)

Cluster Size Fluctuations

Cluster size fluctuations cause large variations of energy loss from sample to sample

1 cm sampling length

- Landau distribution
 - large broad peak (single or few el. clusters)
 - soft collisions, interaction with whole gas molecule
 - small energy transfer
 - looong tail (multi el. clusters, δ-electrons)
 - hard collisions, semi-free shell electrons
 - large energy transfer

tracks in CERN 2m bubble chamber

Ideal dE/dx measurement

Count number of clusters along track

cluster density should be proportional to dE/dx

Obvious problem

۵

0

- how to resolve individual clusters and count them?
 - usually high cluster density (20 30 cl./cm in Ar mixtures for m.i.p.) \rightarrow 1 cluster per 300 500 µm at typical drift velocities of 50 µm/ns \rightarrow 6 10 ns in between clusters
- need device with high time resolution or high granularity to resolve them
 difficult to achieve
- Most detectors measure CHARGE per sample along a track (charge ~ number of primary + secondary electrons)
 - sensitive to LARGE fluctuations
 - makes dE/dx resolution by charge measurement much worse than cluster counting
 - this is the fundamental, central problem of all dE/dx measurements by charge

Classical dE/dx Measurement by Charge

Widely used (because counting is difficult)

- measure charge of many samples along track
- set "mean" charge over samples = dE/dx
- Problem

۵.

- simple "mean" charge subject to large fluctuations due to multi-election clusters
- How to get better estimate of "mean" energy loss?
 - Most commonly used
 - "Truncated Mean" (robust) → reject samples with highest charge
 - Other methods (rarely used)
 - Max.-Likelihood fit to charge distribution (but more sensitive to changes of Landau shape)
 - Inverse transformation: mean of (1/sqrt[(dE/dx)_i])⁻¹

Truncated Mean

reject (typically) 20-30% of samples with highest charges

- sometimes also 5...10% of lowest charge samples rejected (noise removal)
- calculate mean ("truncated" mean) of remaining samples
- → optimize truncation empirically (→ best dE/dx resolution)
 - Helium mixtures (less multi-electron clusters) need less truncation than Argon mixtures typically accepted fraction

He mixtures: 80% Ar mixtures: 65-70%

number of samples / sampling length per track also plays a role

dE/dx resolution

For a specific gas, dE/dx resolution depends on

- effective detector length L (track length x pressure)
 - ~ I -0.32...-0.36

 \rightarrow

OPAL Jet Chamber

1.6 m track length, 4 bar pressure

"Lehraus" Plot 1983

First attempt by Ivan Lehraus in 1983 to connect dE/dx resolution and detector size (effective detector length L = track length * pressure)

dE/dx resolutions achieved in large detectors as a function of the effective detector length.

Results from 14 large detectors used

The covered range in depth extends above 10 m \cdot atm equivalent. The plot in fig. 11 contains data from: (a) EPI, 1/2 EPI [3,4] and EPI test [23]; (b) high pressure results for Ar/CH₄ [29]; (c) low pressure Xe/C₃H₈, assuming rough equivalence with Ar [34]; (d) LBL TPC [11]; (e) ISIS 1 and ISIS 2 [6,7]; (f) CRISIS test [8]; (g) JADE jet chamber [35]; (h) CLEO dE/dx detector [17]; (i) AFS vertex chamber [15]; (j) ARGUS test [36]; (k) pure C₃H₈ [29] showing the record performance obtained to date (the arguments against the use of pure hydrocarbons were already discussed).

Fit by *Lehraus* : dE/dx res. = 5.7 * L^{-0.37} (%)

"Lehraus" Plot 2021

dE/dx resolution achieved in large detectors, mainly at e⁺e⁻ colliders, at some hadron colliders and fixed target expts.

- Fit by Lehraus 1983: dE/dx res. = 5.7 * L^{-0.37} (%)
- Fit in 2021 (25 large detectors): dE/dx res. = 5.4 * L^{-0.37} (%)
 - 5.4% typical dE/dx resolution for 1 m track length
 - no significant change to 1983
 - performance of present generation of detectors as predicted ~40 years ago

dE/dx Resolutions of major Particle Physics Detectors

Input data for the 2021 "Lehraus" plot

Detector	Accelerator	Туре	Size (Ø x L)	В (Т)	Gas Mixture	Pressure (bar)	Number of samples	Sampling length (mm)	Effective detector length (bar * m)	dE/dx resolution (%)		Truncation	Reference
										isolated tracks	dense tracks	(%)	
ALEPH	LEP	TPC	3.6 m x 4.4 m	1.5	Ar/CH ₄ (91/9)	1	338	4	1.35	4.5		8-60	D. Buskulic et al., NIM A 360 (1995) 481
ALICE	LHC	TPC	5.0 m x 5.0 m	0.5	Ne/CO ₂ (90/10)	1	159	7.5, 10, 15	1.60	4.5	(5.0)	0-70	W. Yu, NIM A 706 (2013) 55, J. Alme et al., NIM A 622 (2010) 316
ARGUS	DORIS	drift cells	1.7 m x 2 m	0.8	C ₃ H ₈ /Methylal	1	36	18	0.65	4.1	(4.4)	10-70	Y. Oku, PhD Thesis, Univ. of Lund (1985), LUNFD6/(NFFL-7024)/
BaBar	PEP-II	drift cells	1.6 m x 2.8 m	1.5	He/i-C ₄ H ₁₀ (80/20)	1	40	12	0.48	7.5		0-80	B. Aubert et al., NIM A 479 (2002) 1-116
BELLE	KEK-B	drift cells	1.9 m x 2.2 m	1.5	He/C ₂ H ₆ (50/50)	1	47	16	0.75	5.5	(7.0)	0-80	E. Nakano, NIM A 494 (2002) 402-408
BES	BEPC	jet cells	2.3 m x 2.1 m	0.4	Ar/CO ₂ /CH ₄ (89/10/1)	1	54	5	0.27	9.0		0-70	J.Z. Bai et al., NIM A 344 (1994) 319
CDF	TEVATRON	jet cells	2.6 m x 3.2 m	1.5	Ar/C ₂ H ₆ /C ₂ H ₆ O (49.6/49.6/0.8)	1	32	12	0.38	7.0		?	D. Stuart, private communications
CLEO II	CESR	drift cells	1.9 m x 1.9 m	1.5	Ar/C ₂ H ₆ (50/50)	1	51	14	0.71	6.2	(7.1)	0-50	Y. Kubota et al., NIM A 320 (1992) 66
CLEO III	CESR	drift cells	1.6 m x 1.9 m	1.5	He/C ₃ H ₈ (60/40)	1	47	14	0.66	5.0		0-70	D. Peterson et al., NIM A 478 (2002) 142-146
CRISIS	TEVATRON	jet cells	1 m x 1 m x 3 m	-	Ar/CO ₂ (80/20)	1	192	15	2.88	3.2		0-75	W.S. Toothacker et al., NIM A 273 (1988) 97
DELPHI	LEP	TPC	2.4 m x 2.7 m	1.2	Ar/CH ₄ (80/20)	1	192	4	0.77	5.7	(6.2)	0-80	P. Abreu et. al., CERN-PPE/95-194, submitted to NIM
D0 FDC	TEVATRON	jet cells	1.2 m x 0.3 m	-	Ar/CH ₄ /CO ₂ (93/4/3)	1	32	8	0.26	12.7		0-70	S. Rajagopalan, PhD Thesis, Northwestern University (1992)
H1	HERA	jet cells	1.7 m x 2.2 m	1.13	Ar/C ₂ H ₆ (50/50)	1	56	10	0.56	10.0		*	I. Abt et al., NIM A 386 (1997) 348-396
JADE	PETRA	jet cells	1.6 m x 2.4 m	0.48	Ar/CH ₄ /i-C ₄ H ₁₀ (88.7/8.5/2.8)	4	48	10	1.92	6.5	(7.2)	5-70	K. Ambrus, PhD Thesis, Univ. of Heidelberg (1986)
KEDR	VEPP-4M	jet cells	1.1 m x 1.1 m	2.0	DME (100)	1	42	10	0.42	10.0		5-70	S.E. Baru et al., NIM A 323 (1992) 151
KLOE	DAΦNE	drift cells	4 m x 3.3 m	0.6	He/i-C ₄ H ₁₀ (90/10)	1	58	28	1.62	3.5		0-80	A. Andryakov et al., NIM A 409 (1998) 390-394 (prototype)
MARK II	SLC	drift cells	3 m x 2.3 m	0.475	Ar/CO ₂ /CH ₄ (89/10/1)	1	72	8.33	0.60	7.0		5-75	A. Bojarski et al., NIM A 283 (1989) 617
NA49	SPS	TPC	.8 m x 3.8 m x 1.3 ı	-	Ar/CH₄/CO2 (90/5/5)	1	90	40	3.60	4.7		10-65	B. Lasiuk, NIM A 409 (1998) 402-406
OBELIX	LEAR	jet cells	1.6 m x 1.4 m	0.5	Ar/C ₂ H ₆ (50/50)	1	40	15	0.60	12.0		0-70	F. Balestra et al., NIM A 323 (1992) 523
OPAL	LEP	jet cells	3.6 m x 4 m	0.435	Ar/CH ₄ /i-C ₄ H ₁₀ (88.2/9.8/2)	4	159	10	6.36	2.8	(3.2)	0-70	M. Hauschild, NIM A 379 (1996) 436
SLD	SLC	jet cells	2 m x 2 m	0.6	CO ₂ /Ar/i-C ₄ H ₁₀ (75/21/4)	1	80	6	0.48	7.0		?	M. Hildreth, private communications
STAR	RHIC	TPC	4 m x 4.2 m	0.5	Ar/CH ₄ (90/10)	1	45	17.2	0.77	8.0		0-70	M. Anderson et al., NIM A 499 (2003), 659
TOPAZ	TRISTAN	TPC	2.4 m x 2.2 m	1.0	Ar/CH ₄ (90/10)	3.5	175	4	2.45	4.4	(4.6)	0-65	M. Iwasaki et al., NIM A 365 (1995) 143
TPC/2γ	PEP	TPC	2 m x 2 m	1.375	Ar/CH ₄ (80/20)	8.5	183	4	6.22	3.0		0-65	G. Cowan, PhD Thesis, Lawrence Berkeley Lab. (1988), LBL-24715
ZEUS	HERA	jet cells	1.7 m x 2.4 m	1.43	Ar/CO ₂ /C ₂ H ₆ (90/8/2)	1	72	8	0.58	8.5		?	W. Zeuner, private communications
												* = inverse q	aussian mean 1/sqrt[(dE/dx)i] used

Cluster Counting

- Direct cluster counting would avoid any problems with cluster fluctuations, truncated mean etc.
 - no charge measurement need, just counting
- In theory → ultimate way to measure dE/dx
 - 30 clusters/cm * 100 cm track length = 3000 clusters
 - 1.8% dE/dx resolution by cluster counting (statistical error only)
 - 5.4% dE/dx resolution by charge measurement (Lehraus fit)
- Not a brand new idea
 - first ideas (1969) by A. Davidenko et al. (JETP, 1969, Vol. 28, No. 2, p. 223)
 - Detailed studies in mid-1990s by G. Malamud, A. Breskin, B. Chechik
 - cluster statistics
 - measurements in low pressure drift chamber
 - simulations
 - expected particle separation

RD51 Workshop on Gaseous Detector Contributions to PID – 17 February 2021

Michael Hauschild - CERN, page 20

Cluster Counting How To?

How to resolve (and count) individual clusters?

reminder:

0

۵

- typically 30 clusters/cm at 1 bar in Argon mixtures
 - \rightarrow about 300 µm separated along track on average
- \rightarrow time separation in fast gases (~50 µm/ns) about 6 ns

Most attempts tried to resolve clusters in time

- however, 6 ns average time separation challenging to resolve them
 - need proper detector geometry/principle
 - clusters need to arrive sequentially at wires/pads, not simultaneously
 - need slow gas with small drift velocity (e.g. CO₂ mixtures, ~10 μm/ns)
 - to stretch arrival time of clusters
 - need gas with lower cluster density (e.g. He mixtures)
 - to further increase time separation between clusters
 - need gas with low diffusion
 - to avoid dissolution of multi-electron clusters
 - gas with good cluster statistics helps too (e.g. He mixtures)
 - more single electron clusters, less multi-electron clusters
 - requires electronics with sufficient time and multi-hit resolution
 - short pulses (proper pulse shaping)

Cluster Counting (by time)

Test beam measurements 1998 using He/CH₄ (80/20)

Cluster Counting for Large Detectors

- New large detector concepts for future e⁺e⁻ colliders consider cluster counting
 - 4th detector concept for ILC (discontinued)
 - CluCou drift chamber with small drift cells
 - He/i-Butane (90/10) gas mixture
 - detector for Super-B (discontinued)
 - full-length single cell drift chamber prototype
 - He/i-Butane (90/10) gas mixture

• IDEA detector for FFC-ee or CEPC

- follow-up of CluCou, small drift cells
- He/i-Butane (90/10) gas mixture
 - simulation shows clear advantage of cluster counting vs. classical dE/dx
 - assumes 4.2% dE/dx resolution and 80% cluster counting efficiency

Cluster Counting Efficiency

Cluster Counting is not (never) perfect

- some narrow clusters cannot be resolved
- but cluster counting efficiency >25% sufficient to beat charge measurement
 Simulation study for ILD-TPC

PID Improvement with Cluster Counting

- PID improvement demonstrated in the full-length single cell drift chamber prototype for Super-B
 - simultaneous charge and cluster counting measurement

Bethe-Bloch with Cluster Counting

Different Bethe-Bloch functions for dE/dx (by charge) and dN/dx (by cluster counting)

- relativistic rise differs (important for particle separation)

- charge measurement is highly sensitive to secondary electrons
- → more secondary electrons (deltas) at higher momenta → larger tails in Landau distribution
- (perfect) cluster counting ignores them → relativistic rise "truncated"
- more different at Argon than at Helium (fewer secondary electrons in Helium)

Simulation study for ILD-TPC

RD51 Workshop on Gaseous Detector Contributions to PID – 17 February 2021

Michael Hauschild - CERN, page 26

Cluster Counting in 2D

- Cluster Counting so far based on time measurement in small drift cells
- Future TPCs with micro-pattern devices (GEMs/MicroMegas) + small pads/pixels have high granularity
 - could make it possible to resolve clusters in space (2D imaging)
 - if time could be added → even 3D positions in space

RD51 Workshop on Gaseous Detector Contributions to PID – 17 February 2021

Michael Hauschild - CERN, page 27

TPC with Cluster Counting

Different endplate technologies suitable for Cluster Counting

Counting Clusters

How to properly count clusters in space (2D)?

need cluster finding algorithm

- difficult to find clusters dissolved by diffusion
- efficiency also strongly depending on drift length
- + electronics thresholds + noise
- Cluster counting in space sensitive to quite some systematics

Conclusions

- Classical PID with dE/dx by charge measurement established since many decades at large detectors
 - dE/dx resolution depends on track length x pressure
 - "Lehraus" plot still valid, no miracles to be expected
- Cluster Counting promises up to ~3x better dE/dx resolution (~2x better separation power)
 - two ways to count clusters
 - resolve clusters either in time (small drift cells)
 - He mixtures needed, slow gas, fast electronics needed
 - or resolve them in space (TPC with micropattern + pad/pixel endplates)
 - diffusion plays key role, needs good cluster finding algorithm
 - large systematics expected, e.g. depending on drift length

■ Cluster Counting can be complementary to classical dE/dx by charge → but no miracles to be expected for PID