dE/dx, classical and with cluster counting

A brief review of particle identification in gaseous detectors

Outline

- **some basics and fundamental problems of dE/dx measurements**
	- **→ Bethe-Bloch, clusters and all that**
	- **resolution, particle separation power**
- **the classical way: dE/dx by charge measurement**
- **the alternative way: dE/dx by cluster counting**
	- **cluster counting in time**
	- **cluster counting in 2D with micropattern detectors**

Particle ID with dE/dx at e+e– colliders and elsewhere

QCD

inclusive hadronic particle spectra (pions, kaons, protons)

e Heavy flavour physics

- **b-tagging (electrons from semi-leptonic b-decays)**
- **c-tagging, D meson spectroscopy (kaon/pion separation)**

Tau physics

hadronic branching ratios, strange spectral functions

Searches

- **heavy charged long-lived/stable tracks (SUSY)**
- **free quarks**
- **magnetic monopoles**

Bethe-Bloch Calculations...

...are difficult, different models exist \bullet

- **Landau-Sternheimer calculation**
- **Bethe-Sternheimer calculation**
- **Allison-Cobb Monte Carlo Ann. Rev. Nucl. Sci., 30 (1980) 253**

Level of (dis)agreement: ~3% in relativistic rise

Common problem

what E_{cut} **to be used? What's** E_{cut} **at all?**

The cut-off Energy (E_{cut})

- **Tracking detectors usually DON'T measure the full energy loss of a particle!**
- **Secondary electrons with sufficient energy may escape from track, e.g. to adjacent drift cell, pad etc.**
	- **may be recognized as separate hit, not associated to track**
	- **detectors measure RESTRICTED energy loss instead of full energy loss**
- **c** Cut-off energy E_{cut} defines **maximum energy of an electron still associated to a track**
	- **depends on detector geometry, double hit resolution, magnetic field, diffusion and more**
	- \rightarrow typical E_{cut} ~a few keV corresponding **to some 100 μm – 1 mm range**

Electron Range

Ecut Dependence

- **Ecut is difficult to determine, basically a free parameter**
- **Impossible to make calculations of Bethe-Bloch function to** \bullet **percent level or even better**
	- \div results depend on E_{cut} a lot

relativistic rise variation up to 50%

Empirical parameterization used in practice

dE/dx Parameterization

Parameterization usually by fit to data (various functional forms) \bullet

fully empirical (any Polynomials), semi-empirical (Bethe-Bloch + parameters)

Use of dE/dx in physics analysis requires \bullet

- **good dE/dx parameterization and good estimate of dE/dx resolution**
- **for any track in question: calculate Χ² probabilities for each particle species (typically e, µ, π, K, p)** 2

$$
\mathbf{X}^2(\mathbf{e}, \mathbf{\mu}, \pi, \mathbf{K}, \mathbf{p}) = \begin{bmatrix} dE/dx_{\text{measured}} - dE/dx_{(\mathbf{e}, \mathbf{\mu}, \pi, \mathbf{K}, \mathbf{p})_{\text{predicted}}} \\ \sigma (dE/dx) \end{bmatrix}
$$

Particle Separation Power

Important for physics \bullet

particle separation power in relativistic rise

separation power = separation

- **dE/dx resolution is NOT important!**
- **need to optimize separation power (if possible)**
- **Higher pressure reduces separation in relativistic rise** \bullet

 $^{\circ}$ C₃H₈

 $P(atm)$

 \bullet A

- **Optimal separation power at 3 - 4 bars**
	- **also less diffusion, but...**
	- **pressure vessel needed...**

Particle Separation Power

Typical (average) particle separation power at LEP

- **e/π > 2σ up to 12...14 GeV**
- **π/K > 2σ up to 8...20 GeV (max. 2.5 – 3.5 σ)**
- **p/K always below 2σ (max. 1 – 1.7 σ)**

Energy Loss by Ionization (brief reminder)

Primary number of ionizations per unit length is Poissondistributed

- **typically ~30 primary interactions (ionization clusters) / cm in gas at 1 bar**
- **However, primary electrons sometimes get large energies** ۰
	- **can make secondary ionization**
	- **can even create visible secondary track ("delta-electron")**
	- **large fluctuations of energy loss by ionization**

Primary ionization $\qquad \qquad \qquad$ **Total ionization = primary + secondary ionization**

- **Typically: total ionization = 3 x primary ionization**
	- **on average ~ 90 electrons/cm**

 $\ddot{\circ}$

Cluster Size Distributions

Probabilities (%) to create Nel electrons

less multi-electron clusters in Helium (better!)

HEED cluster simulation (HEED written by I. Smirnov)

HEED cluster

simulation (HEED written by I. Smirnov)

Cluster Size Fluctuations

Cluster size fluctuations cause large variations of energy loss from sample to sample

1 cm sampling length

- **Landau distribution**
	- **large broad peak (single or few el. clusters)**
		- soft collisions, interaction with whole gas molecule
		- small energy transfer
		- **looong tail (multi el. clusters, δ-electrons)**
		- hard collisions, semi-free shell electrons
		- large energy transfer

tracks in CERN 2m bubble chamber

Ideal dE/dx measurement

Count number of clusters along track

cluster density should be proportional to dE/dx

Obvious problem

- **how to resolve individual clusters and count them?**
	- **usually high cluster density (20 - 30 cl./cm in Ar mixtures for m.i.p.)** à **1 cluster per 300 – 500 μm**
		- at typical drift velocities of 50 μ m/ns \rightarrow 6 10 ns in between clusters
- **need device with high time resolution or high granularity to resolve them**
	- **difficult to achieve**

 \bullet

 $\ddot{\text{o}}$

- **Most detectors measure CHARGE per sample along a track (charge** ≃ **number of primary + secondary electrons)**
	- **sensitive to LARGE fluctuations**
		- **makes dE/dx resolution by charge measurement much worse than cluster counting**
		- **this is the fundamental, central problem of all dE/dx measurements by charge**

Classical dE/dx Measurement by Charge

Widely used (because counting is difficult)

- **measure charge of many samples along track**
- **get "mean" charge over samples = dE/dx**
- **Problem**

 $\ddot{\bullet}$

- **simple "mean" charge subject to large fluctuations due to multi-election clusters**
- **How to get better estimate of "mean" energy loss?**
	- **Most commonly used**
		- **"Truncated Mean" (robust)** à **reject samples with highest charge**
	- **Other methods (rarely used)** \rightarrow
		- **Max.-Likelihood fit to charge distribution (but more sensitive to changes of Landau shape)**
		- Inverse transformation: mean of (1/sqrt[(dE/dx)_i])⁻¹

Truncated Mean

reject (typically) 20-30% of samples with highest charges

- **sometimes also 5...10% of lowest charge samples rejected (noise removal)**
- **calculate mean ("truncated" mean) of remaining samples**
- **→ optimize truncation empirically (→ best dE/dx resolution)**
	- **Helium mixtures (less multi-electron clusters) need less truncation than Argon mixtures typically accepted fraction**
		- **He mixtures: 80% Ar mixtures: 65-70%**

number of samples / sampling length per track also plays a role

dE/dx resolution

For a specific gas, dE/dx resolution depends on

- **effective detector length L (track length x pressure)**
	- **~ L-0.32...-0.36**

OPAL Jet Chamber

RD51 Workshop on Gaseous Detector Contributions to PID – 17 February 2021 Michael Hauschild - CERN, page 16

"Lehraus" Plot 1983

First attempt by *Ivan Lehraus* **in 1983 to connect dE/dx resolution and detector size (effective detector length L = track length * pressure)**

dE/dx resolutions achieved in large detectors as a function of the effective detector length.

Results from 14 large detectors used

The covered range in depth extends above $10 \text{ m} \cdot \text{atm}$ equivalent. The plot in fig. 11 contains data from: (a) EPI, $1/2$ EPI [3,4] and EPI test [23]; (b) high pressure results for Ar/CH₄ [29]; (c) low pressure $Xe/C₃H₈$, assuming rough equivalence with Ar [34]; (d) LBL TPC [11]; (e) ISIS 1 and ISIS 2 [6,7]; (f) CRISIS test [8]; (g) JADE jet chamber [35]; (h) CLEO dE/dx detector [17]; (i) AFS vertex chamber $[15]$; (i) ARGUS test $[36]$; (k) pure C_3H_8 [29] showing the record performance obtained to date (the arguments against the use of pure hydrocarbons were already discussed).

Fit by *Lehraus* **: dE/dx res. = 5.7 * L-0.37 (%)**

"Lehraus" Plot 2021

dE/dx resolution achieved in large detectors, mainly at e+e– colliders, at some hadron colliders and fixed target expts.

- **Fit by** *Lehraus* **1983:** \bullet dE/dx res. = $5.7 * L^{-0.37}$ (%)
- **Fit in 2021 (25 large detectors):** \bullet dE/dx res. = $5.4 \times L^{-0.37}$ (%)
	- **5.4% typical dE/dx resolution for 1 m track length**
	- **no significant change to 1983**
	- **performance of present generation of detectors as predicted ~40 years ago**

dE/dx Resolutions of major Particle Physics Detectors

Input data for the 2021 "Lehraus" plot 0

Cluster Counting

- **Direct cluster counting would avoid any problems with cluster fluctuations, truncated mean etc.**
	- **no charge measurement need, just counting**
- In theory \rightarrow ultimate way to measure dE/dx \bullet
	- **30 clusters/cm * 100 cm track length = 3000 clusters**
	- **1.8% dE/dx resolution by cluster counting (statistical error only)**
	- **5.4% dE/dx resolution by charge measurement (Lehraus fit)**
- **Not a brand new idea**
	- **first ideas (1969) by A. Davidenko et al.** \bullet **(JETP, 1969, Vol. 28, No. 2, p. 223)**
	- **Detailed studies in mid-1990s by G. Malamud,** \bullet **A. Breskin, B. Chechik**
		- cluster statistics \bullet
		- measurements in low pressure drift chamber \bullet
		- simulations \bullet
		- expected particle separation

Cluster Counting How To?

How to resolve (and count) individual clusters?

reminder:

 $\ddot{\bullet}$

 $\ddot{\bullet}$

- **typically 30 clusters/cm at 1 bar in Argon mixtures**
	- à **about 300 µm separated along track on average**
- à **time separation in fast gases (~50 µm/ns) about 6 ns**

Most attempts tried to resolve clusters in time

- **however, 6 ns average time separation challenging to resolve them**
	- **need proper detector geometry/principle** \bullet
		- clusters need to arrive sequentially at wires/pads, not simultaneously
	- need slow gas with small drift velocity (e.g. CO₂ mixtures, ~10 μ m/ns)
		- to stretch arrival time of clusters
		- **need gas with lower cluster density (e.g. He mixtures)**
			- to further increase time separation between clusters
	- **need gas with low diffusion** \bullet
		- to avoid dissolution of multi-electron clusters
		- **gas with good cluster statistics helps too (e.g. He mixtures)**
			- more single electron clusters, less multi-electron clusters
	- **requires electronics with sufficient time and multi-hit resolution** \bullet
		- short pulses (proper pulse shaping)

Cluster Counting (by time)

• Test beam measurements 1998 using He/CH₄ (80/20)

Cluster Counting for Large Detectors

- **New large detector concepts for future e+e– colliders consider** \bullet **cluster counting**
	- **4th detector concept for ILC (discontinued)** \bullet
		- **CluCou drift chamber with small drift cells**
		- **He/i-Butane (90/10) gas mixture**
	- **detector for Super-B (discontinued)** \bullet
		- **full-length single cell drift chamber prototype**
		- **He/i-Butane (90/10) gas mixture**

IDEA detector for FFC-ee or CEPC \bullet

- **follow-up of CluCou, small drift cells**
- **He/i-Butane (90/10) gas mixture** \bullet
- **simulation shows clear advantage of cluster counting vs. classical dE/dx**
- **assumes 4.2% dE/dx resolution and 80% cluster counting efficiency**

Cluster Counting Efficiency

Cluster Counting is not (never) perfect

- **some narrow clusters cannot be resolved**
- **but cluster counting efficiency >25% sufficient to beat charge measurement** Simulation study for ILD-TPC

PID Improvement with Cluster Counting

- **PID improvement demonstrated in the full-length single cell drift chamber prototype for Super-B**
	- **simultaneous charge and cluster counting measurement**

Bethe-Bloch with Cluster Counting

Different Bethe-Bloch functions for dE/dx (by charge) and dN/dx (by cluster counting)

relativistic rise differs (important for particle separation)

- charge measurement is highly sensitive to secondary electrons
- more secondary electrons (deltas) at higher momenta \rightarrow larger tails in Landau distribution
- (perfect) cluster counting ignores them \rightarrow relativistic rise "truncated"

more different at Argon than at Helium (fewer secondary electrons in Helium)

Simulation study for ILD-TPC

Cluster Counting in 2D

- **Cluster Counting so far based on time measurement in small** \bullet **drift cells**
- **Future TPCs with micro-pattern devices (GEMs/MicroMegas) +** \bullet **small pads/pixels have high granularity**
	- **could make it possible to resolve clusters in space (2D imaging)** \bullet
	- **if time could be added** \rightarrow **even 3D positions in space**

TPC with Cluster Counting

Different endplate technologies suitable for Cluster Counting

Counting Clusters

How to properly count clusters in space (2D)?

need cluster finding algorithm

- **difficult to find clusters dissolved by diffusion**
- **efficiency also strongly depending on drift length**
- **+ electronics thresholds + noise**

Cluster counting in space sensitive to quite some systematics

Conclusions

- **Classical PID with dE/dx by charge measurement established since many decades at large detectors**
	- **dE/dx resolution depends on track length x pressure**
	- **"Lehraus" plot still valid, no miracles to be expected**
- **Cluster Counting promises up to ~3x better dE/dx resolution (~2x better separation power)**
	- **two ways to count clusters**

 $\ddot{\bullet}$

- **resolve clusters either in time (small drift cells)**
- **He mixtures needed, slow gas, fast electronics needed**
- **or resolve them in space (TPC with micropattern + pad/pixel endplates)**
- **diffusion plays key role, needs good cluster finding algorithm**
- **large systematics expected, e.g. depending on drift length** \bullet

Cluster Counting can be complementary to classical dE/dx by $charge \rightarrow but no miracles to be expected for PID$