Identification of nuclear recoils in a gas TPC with optical readout

E. Di Marco for the CYGNO Collaboration

RD51 Workshop on Gaseous Detector Contributions to PID 16-17 February 2021 (remote-only)

- The aim of CYGNO project is the development and realisation of a GEMbased Optically Readout Time Projection Chamber for the study of rare events with energy releases in the range 1-100 keV.
- Expected performance is:
 - High detection efficiency down to 1 keV;
 - Directionality at 10 keV;
 - Background rejection below 10 keV;
- Main ideas of the technology are:
 - He/CF4 based gas target (atmospheric pressure);
 - GEM amplification stage;
 - Combined optical readout CMOS + PMT;

Project phases

- Lemon (Lime), prototypes of CYGNO, developed and operated at LNF
 - TPC with with 20 (50) cm drift space
 - Triple GEM (20 x 24 cm^2) in the TPC anode to amplify ionization charge
 - Optical readout of light emitted in the GEM through a CMOS camera
 - 2048 x 2048 pixels (2304 x 2304)
 - 1 pixel ~ 125 x 125 μm²
 - noise ~ 2 (1) photons / pixel
 - PMT on the cathode side (trigger)

- Runs for Noise measurement: HV lowered to 300 V
 - 2D pedestal map and noise map
- Runs without sources:
 - characterization of ambient background (mostly cosmic rays)
- Runs with 55Fe source:
 - X-rays with energy 5.9 keV: calibration of energy scale and re-assesment of the energy resolution
- Runs with AmBe source (3.5 x 10³ MBq):
 - photons with E = 59 keV
 - photons with E = 4.4 MeV
 - neutrons with kinetic energy [1-10] MeV from α-Be interaction => main source of nuclear recoils

Example images

17 February 2021

Example image

This image is an example of what we can have using a specific source and what we need to identify:

- Brighter and long tracks;
- Lighter tracks;
- Brighter and rounded tracks;
- Close tracks;
- Overlapped tracks;
- etc..

The conditions are very different from the real experiment, where it is expect only few natural radioactivity background and the signal which are **short** and **curvy** tracks.

Noise Zero-Suppression

- Noise measured with runs with HV=300 V
- Found to be equivalent to runs in complete dark (camera with its own cap)
- Pedestal (CMOS sensor baseline) is subtracted pixel-by-pixel
- Zero-suppression to clean sensor noise: A_i P_i <
 1.3σ_i
 - σ mode = 1.7 photons
- Noise was found to evolve with time. Weekly pedestal runs taken to track:
 - pedestal and standard deviation evolution

- iDBSCAN: an application of DBSCAN with these peculiarities
 - 3D phase space: 2D spatial coordinates (x,y) + pixel intensities
 - => clusters together neighbor pixels, but
 "weighting" more pixels with higher light
 - iterative procedure:
 - 1. parameter set to efficiently cluster very intense energy deposits
 - targets energetic α's, NRs
 - 2. remove the clustered pixels, run again with another parameter set
 - targets less intense deposits (most of 55Fe and track pieces go here)
 - 3. remove again clustered pixels, run again with a loose parameter set
 - target fake clusters from random combinatorics
- Run on 4x4 rebinned image for CPU-time

Rebinned image

Example of DBSCAN

DBSCAN divides a dataset into subgroups of high density regions using two parameters: epsilon (ϵ) and minimum amount of points required to form a cluster (minPts).

Core point – a point that has at least a minimum number of other points (minPts) within its ε radius;

Border point – a point is within the ε radius of a core point BUT has less than the minimum number of other points (minPts) within its own ε radius;

Noise point – a point that is neither a core point or a border point.

- Need of something that joins pieces for cosmics / longer tracks
- Use full-resolution to be sensitive to gradients of clusters in zones of local minima of the energy release along the path
- chosen Morphological Geodesic Active Contours (GAC):
 - able to follow kinks and change from convex -> concave shape along track
 - very efficient in zones of low information
 - can shrink efficienty along the crest of the cluster (300 iterations)
- An "old" algorithm, but with recent developments:
 - Kass, Witkin, Terzopoulos Snakes: Active contour models. Int J Comput Vision 1, 321–331
 - Caselles, Kimmel and Sapiro, 1997 Geodesic Active Contours Int. J. Comput. Vis. 22 61–79
 - Márquez-Neila, Baumela and Alvarez, 2014 A morphological approach to curvature-based evolution of curves and surfaces, IEEE Trans. Pattern Anal. Mach. Intell. 36 2–17

 The supercluster is a deformable spline which is sensitive mainly to the gradient (in intensity) of the image, with a weight which considers the continuity and the smoothness of the contour

$$||\nabla(N_{ph})|| = \sqrt{\left(\frac{\partial N_{ph}}{\partial x}\right)^2 + \left(\frac{\partial N_{ph}}{\partial y}\right)^2},$$

gradient in intensity

$$\theta = \tan^{-1}\left(\frac{\partial N_{ph}}{\partial y} / \frac{\partial N_{ph}}{\partial x}\right).$$

gradient in direction

- superclustering is a minimization of the "energy" along the boundary curve C

$$E(\mathcal{C}) = \int_0^1 g(N_{ph})(\mathcal{C}(p)) \cdot |\mathcal{C}_p| dp,$$

- the "stopping function" g defines where the edge is located, and it is purely geometrical (geodesic)

$$g(N_{ph}) = \frac{1}{\sqrt{1 + \alpha |\nabla G_{\sigma} * N_{ph}|}},$$

 some additional constrain is used to ensure the smoothness of the contour, especially to follow patterns which turn from convave to convex

Iterative algorithm

- It starts from the whole pictures, then iteratively shrinks

10th iteration 50th iteration 300th iteration

- the number of iterations depend on many details: smoothness of the contour, contrast, noise, etc.
 - some multi-dimensional optimization is needed for a given case
- All reconstruction (RAW input, zero-suppression, basic clusters, super clusters, calculation of cluster shapes, ROOT output) takes ~1s / image

E. Di Marco

17 February 2021

supercluster examples (LEMON) (INFN

dense+faint regions joined

long track + δ ray

long muon track + probable α

E. Di Marco

17 February 2021

RD51 meeting 14

Supercluster examples (LIME) INFŃ

Supercluster examples (LIME) INFŃ

Energy scale calibration

~2500 photons/cluster

average $\sigma(E)/E \sim 18\%$

~10% of merged spots clearly separated

- Easy handles to reject the ubiquitous background from cosmic rays:
 - long ($l_p>13$ cm) and "slim" (low aspect ratio: ξ = width / length)

Background normalization

- No-source runs are used to get the templates of any variable to statistically subtract cosmics background from runs with source
- First, normalize the cosmic templates to the same live-time (40ms * N_{frames})
- ~OK, apart a small PMT-trigger bias:
 - in AmBe runs: recoils + cosmics present
 - in no-source runs: only cosmics present
 - => PMT triggers more frequently on cosmics in no-source runs than in AmBe runs for the same live-time (40 ms)
- Find a control region pure in cosmics in both AmBe and no-source runs (CR)
 - Energy 50<E<80 keV (2.3 keV / cm), long and slim tracks
- Compute trigger scale factor SF:

$$\varepsilon_{SF} = \frac{N_{CR}^{AmBe}}{N_{CR}^{no-source}}. ~~75\%$$

Cosmics control region

E. Di Marco

Further µ-rejection using PMT

- Residual background from cosmic rays with small pieces of tracks not joined by the supercluster can be still discriminated using the time information
- a muon track inclinated wrt the x-y plane produces clusters that arrive to the PMT at different times => broad waveform => large Time Over Threshold (TOT)

- Another visible candle are recoils induced by 59 keV photons from AmBe
- expected to be medium density, not-spot-like clusters
- This component is clearly visible only in the AmBe runs (after comsic-background subtraction) in the δ vs I_p plane

cluster density

- Cluster density $\delta = I_{SC}/N_{pix}$ used as main discriminating variable

After the dedicated bkg-normalization and bkg-subtraction shows 2 populations in AmBe:

around δ ~10 and ~17

preselection+ sliding threshold on this variable is used to give signal identification results: $\varepsilon_{S} vs (1-\varepsilon_{B})$

N.B.1 cosmics background not of interest for underground CYGNO

=> concentrate on electron recoils from Fe rejection (so at fixed E=5.9 keV)

Nuclear recoils identification

ROC curve (S efficiency vs B rejection) for the selection on δ

Full efficiency is the product of preselection (mostly cosmics rejection) efficiency and δ selection.

Two reference selections: **50% and 40% efficient on signal** => correspond to **96.5% and 99.2% background rejection**

working point	Signal efficiency			Background efficiency		
	$arepsilon_{S}^{presel}$	$arepsilon_S^\delta$	ε_S^{total}	$arepsilon_B^{presel}$	$arepsilon_B^\delta$	ε_B^{total}
WP_{50}	0.98	0.51	0.50	0.70	0.050	0.035
WP_{40}	0.98	0.41	0.40	0.70	0.012	0.008

E. Di Marco

Nuclear recoils spectrum

Spectrum after full WP50 selection

Most of the nuclear recoil candidates have a visible energy E<20 keV

Tails up to ~100 keV

Background-subtracted energy spectrum before and after the density selection allows to compute signal efficiency vs E

Done for the 2 fixed rejection working points for 5.9 keV electron recoils:

ε_s ≈ 40% for E<20 keV
ε_s ≈ 14% for 5<E<10 keV

Examples of 2 low-E NRs

- Two selected NR candidates with E<6 keV

Image after zero suppression

Image after zero suppression

E=5.2 keV

E=6.0 keV

IOP Publishing

Meas. Sci. Technol. 32 (2021) 025902 (20pp)

Measurement Science and Technolog

https://doi.org/10.1088/1361-6501/abbd1;

Identification of low energy nuclear recoils in a gas time projection chamber with optical readout

E Baracchini^{1,2}, L Benussi³, S Bianco³, C Capoccia³, M Caponero^{3,4}, G Cavoto^{5,6}, A Cortez^{1,2}, I A Costa⁷, E Di Marco⁵, G D'Imperio⁵, G Dho^{1,2}, F Iacoangeli⁵, G Maccarrone³, M Marafini^{5,8}, G Mazzitelli³, A Messina^{5,6}, R A Nobrega⁷, A Orlandi³, E Paoletti³, L Passamonti³, F Petrucci^{9,5}, D Piccolo³, D Pierluigi³, D Pinci⁵, F Renga⁵, F Rosatelli³, A Russo³, G Saviano^{3,10}, R Tesauro³ and S Tomassini³

¹ Gran Sasso Science Institute, L'Aquila, Italy

² INFN, Laboratori Nazionali del Gran Sasso, Assergi, Italy

³ INFN, Laboratori Nazionali di Frascati, Frascati, Italy

- ⁴ ENEA Centro Ricerche Frascati, Frascati, Italy
- ⁵ INFN, Sezione di Roma, Roma, Italy
- ⁶ Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
- ⁷ Universidade Federal de Juiz de Fora, Juiz de Fora, Brasil
- ⁸ Museo Storico della Fisica e Centro Studi e Ricerche 'Enrico Fermi', Roma, Italy
- ⁹ Dipartimento di Matematica e Fisica, Università Roma TRE, Roma, Italy
- ¹⁰ Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Università di Roma, Roma, Italy

E-mail: emanuele.dimarco@roma1.infn.it

Received 24 July 2020, revised 21 September 2020 Accepted for publication 30 September 2020 Published 1 December 2020

E. Di Marco

- implemented a reconstruction algorithm which is efficient in a wide range of energies and track patterns
- tested on calibration events (55Fe, 59 keV photons, cosmic rays, nuclear recoils)
- nuclear recoil efficiencies for high rejection of 6 keV electron recoil:
 - $\epsilon_s \approx 40\%$ for E<20 keV
 - $\epsilon_s \approx 14\%$ for 5<E<10 keV
- Next developments in the pattern recognition:
 - particle identification using cluster 3D properties
 - 3D reconstruction using information from PMT (z-coordinate)
- A lot of work ongoing on the HW side, and on simulation of signals and backgrounds towards installation under Gran Sasso

The End