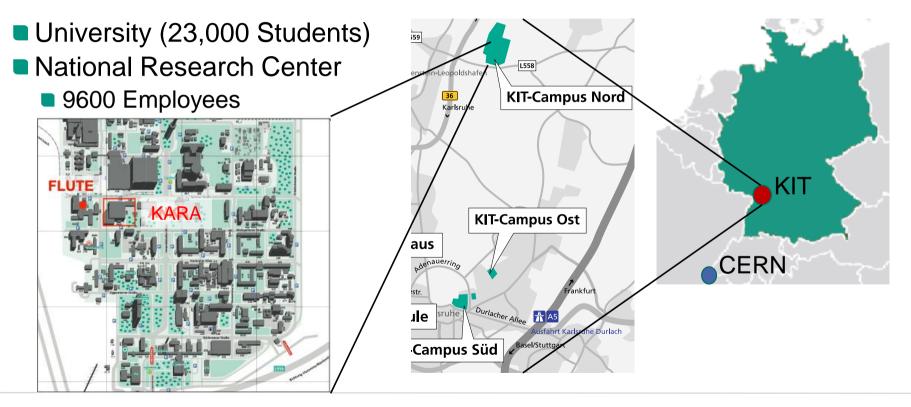


Induced Voltage with uneven Sampling

Markus Schwarz

www.kit.edu

Karlsruhe Institute of Technology



Motivation

In many machines bunch-to-bunch distance exceeds bunch length

- LHC beam in SPS: one bunch every 5 RF-buckets, 25 ns > 3 ns
- KARA: 2 ps bunches in 2 ns RF-buckets
- Simulation of multi-bunch instabilities become challenging when uniform sampling is used because of the many empty bins

Basics of Induced Voltage Calculation

- To compute $V_{ind}(\Delta t) = -2 q N_p \Re \int_0^\infty Z(f) \Lambda(f) e^{2\pi i f \Delta t}$ need
 - Line density $\lambda(\Delta t)$ and its Fourier transform $\Lambda(f)$
 - Compute inverse Fourier transform

Object	Impedance type	Method	Sampling	Complexity
InducedVoltageFreq	Any	Circular convolution	Uniform	N log N
InducedVoltageTime	Any	Linear convolution	Uniform	N log N
InducedVoltageResonator	Resonator	Matrix multiplication	Non-uniform	N ²
InducedVoltageSparse	Any	Matrix multiplication	Non-uniform	N ²

Fourier Transform of non-uniform Data Points

• N data points (x_i, y_i) not necessarily equidistant

- Continuous function y(x) from (x_j, y_j) by linear interpolation
- Fourier transform of y(x) at arbitrary wave number k given by

$$Y(k) = \frac{1}{k^2} \sum_{j=0}^{N-2} \frac{y_{j+1} - y_j}{x_{j+1} - x_j} \left(e^{-ikx_{j+1}} - e^{-ikx_j} \right)$$

slope of line segments

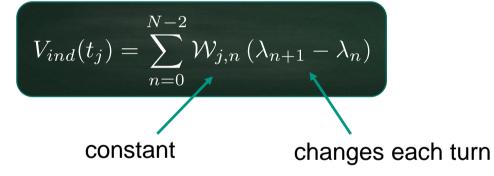
Note: Interpolation does not have to be carried out

Algorithm to compute V_{ind}

- Given *N* data points (t_j, λ_j) from bunch profile and impedance $Z(\omega)$ $V_{ind}(t_j) = -2 q N_p \Re \int_0^\infty Z(f) \Lambda(f) e^{2\pi i f t_j}$
 - **Compute Fourier transform** $\Lambda(\omega)$ from linear interpolation
 - Evaluate integrand $Y(\omega) = Z(\omega)\Lambda(\omega)$ at *M* arbitrary, convenient frequencies ω_m to obtain data points in frequency domain (ω_m, Y_m)
 - Inverse Fourier transform of (ω_m, Y_m) from linear interpolation gives $V_{ind}(t_j)$
- Swap summations over m (frequency) and n (time) $\rightarrow N \times (N - 1)$ "wake" matrix 122
 - $\Rightarrow N \times (N-1)$ "wake" matrix $\mathcal{W}_{j,n}$

Expression for V_{ind}

■ $V_{ind}(t_j)$: matrix multiplication of "wake" matrix $W_{j,n}$ and profile difference vector $\lambda_{n+1} - \lambda_n$



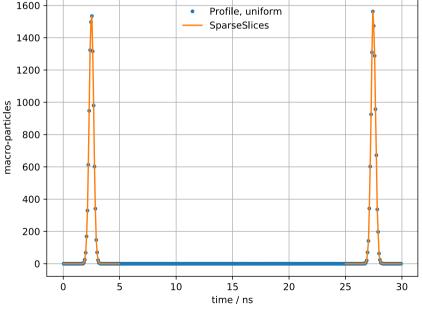
"Wake" matrix $\mathcal{W}_{j,n}$ needs to be computed only once
Only need bunch profile λ_n (not its Fourier transform)
Computation time is $\mathcal{O}(N^2)$

InducedVoltageSparse Syntax

- Algorithm implemented in BLonD on my fork
- InducedVoltageSparse(Beam, profile_object, impedance_source_list, init_frequency_array, adaptive_frequency_sampling=False)
- profile_object can either be a Profile or SparceSlices object
- init_frequency_array: (initial) frequencies at which to sample integrand (ω_m, Y_m)
- If adaptive_frequency_sampling is True, integrand is sampled adaptively (only at initialization)

Sparse Profile in BLonD

BLonD already has SparseSlices* object, to compute profile only at selected RF buckets

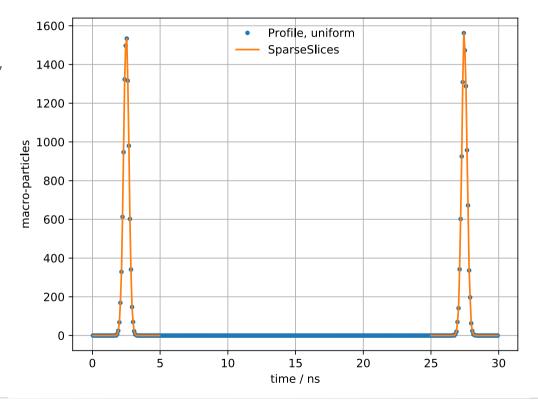


*Rename to SparseProfile?

Example: Profile

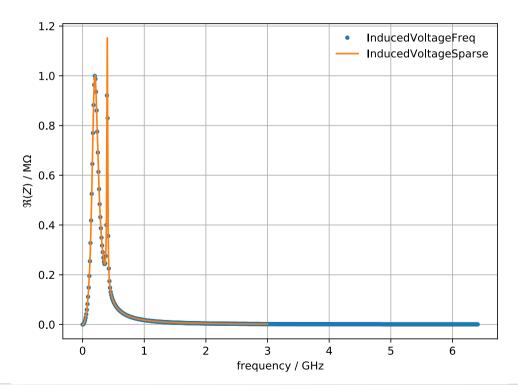
2 Gaussian bunches spaced 5x5 ns apart

Use either SparseSlices* or Profile object

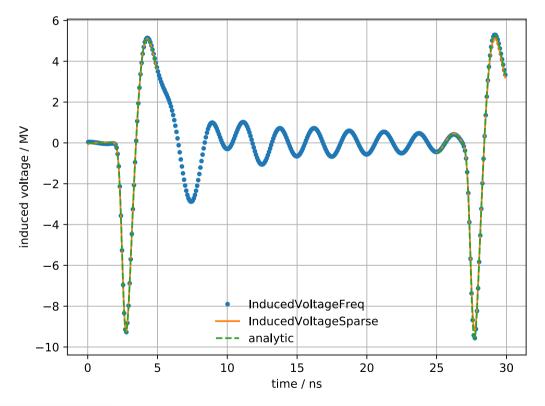


Example: Impedance

- Two resonators
- Adaptive frequency sampling was used for InducedVoltageSparse



Example: Induced Voltage



Example: RunTime

From %timeit -r 500 -n 10 xxx.induced_voltage_1turn()

InducedVoltageObject	Run Time
InducedVoltageFreq	22.4 µs ± 3.47
InducedVoltageSparse	21.4 μs ± 8.71

Similar runtimes for this example

Summary and Outlook

- Introduced InducedVoltageSparse object that computes the induced voltage for arbitrary impedance and non-uniform binning.
 - Computation in frequency domain needs to done only once
 - Can use adaptive frequency sampling
- Similar run time compared to InducedVoltageFreq
- Still needs bugs fixing!

Thank you for your attention!

Computation Details I

• Fourier transform of bunch profile at frequency ω_m

$$\Lambda_m = \frac{1}{\omega_m^2} \sum_{n=0}^{N-2} \frac{\lambda_{n+1} - \lambda_n}{t_{n+1} - t_n} \left(e^{i\omega_m t_{n+1}} - e^{i\omega_m t_n} \right)$$

• Integrand $Y_m = Y(\omega_m)$ then given by

$$Y_m = Z_m \Lambda_m = \frac{Z_m}{\omega_m^2} \sum_{n=0}^{N-2} \frac{\lambda_{n+1} - \lambda_n}{t_{n+1} - t_n} \left(e^{-i\omega_m t_{n+1}} - e^{-i\omega_m t_{n+1}} \right)$$

Computation Details II

Inverse Fourier transform of (ω_m, Y_m) from linear interpolation gives $V_{ind}(t_j)$

$$V_{ind}(t_j) = \frac{qN_p}{2\pi t_j^2} \sum_{m=0}^{M-2} \frac{Y_{m+1} - Y_m}{\omega_{m+1} - \omega_m} \left(e^{i\omega_{m+1}t_j} - e^{i\omega_m t_j} \right)$$

Lengthy expression, but factor $(\lambda_{n+1} - \lambda_n)$ can be factored out and summations over *m* (frequency) and *n* (time) can be swapped.

Computation Details III, "Wake" matrix

■ $N \times (N - 1)$ "Wake" matrix $\mathcal{W}_{j,n}$

$$\mathcal{W}_{j,n} = \frac{qN_p}{2\pi t_j^2} \frac{1}{t_{n+1} - t_n} \sum_{m=0}^{M-2} \frac{1}{\omega_{m+1} - \omega_m} \left[\frac{Z_m}{\omega_m^2} \left(e^{-i\omega_m t_n} - e^{-i\omega_m t_{n+1}} \right) - \frac{Z_{m+1}}{\omega_{m+1}^2} \left(e^{-i\omega_{m+1} t_n} - e^{-i\omega_{m+1} t_{n+1}} \right) \right]$$

Only depends on constant parameters ⇒ needs to be computed only once!