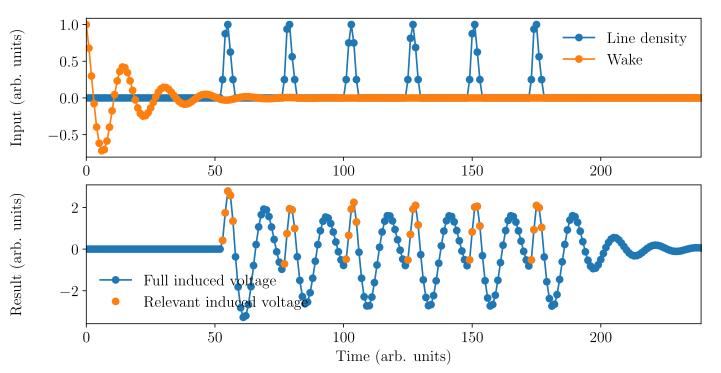
# Follow-up on compressed convolution

Ivan Karpov

BLonD code development meeting, 12.03.2021


# **Motivation**

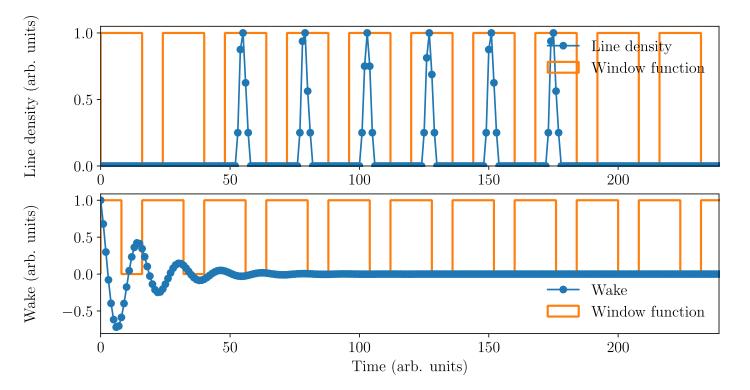
We aim to speed up simulations for beam with periodic gaps (LHC type in SPS, LHC, FCC, etc.)

 $\rightarrow$  Compressed wake calculation can be implemented (similarly to PyHEADTAIL <u>J. Komppula, K.</u> <u>Li, & N. Mounet, PyHEADTAIL Meeting #19, 2018</u>)

#### Method is based on:

- Picking relevant data and removing the rest
- Using fast FFT convolution




# **Motivation**

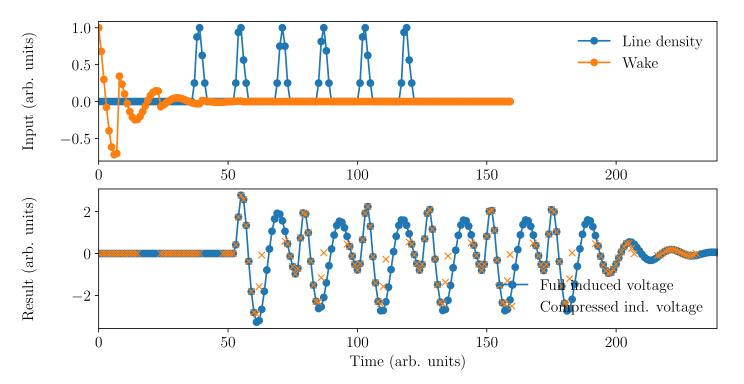
We aim to speed up simulations for beam with periodic gaps (LHC type in SPS, LHC, FCC, etc.)

 $\rightarrow$  Compressed wake calculation can be implemented (similarly to PyHEADTAIL <u>J. Komppula, K.</u> <u>Li, & N. Mounet, PyHEADTAIL Meeting #19, 2018</u>)

#### Method is based on:

- Picking relevant data and removing the rest
- Using fast FFT convolution




# **Motivation**

We aim to speed up simulations for beam with periodic gaps (LHC type in SPS, LHC, FCC, etc.)

 $\rightarrow$  Compressed wake calculation can be implemented (similarly to PyHEADTAIL <u>J. Komppula, K.</u> <u>Li, & N. Mounet, PyHEADTAIL Meeting #19, 2018</u>)

#### Method is based on:

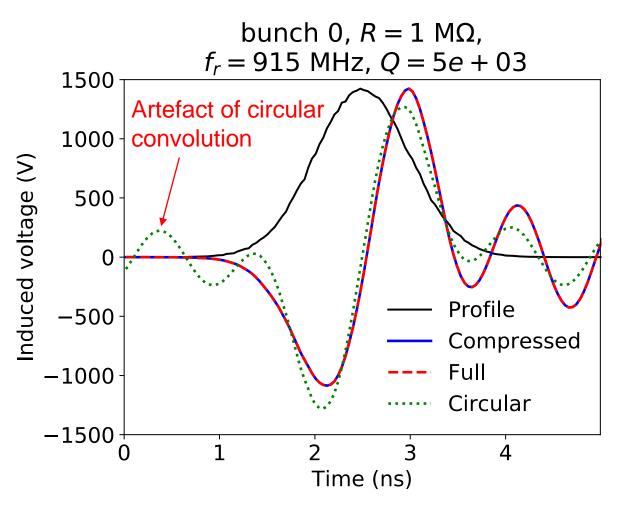
- Picking relevant data and removing the rest
- Using fast FFT convolution



# First implementation in BLonD\*

Mostly InducedVoltageTime class in impedance.py is modified

- Requires additional info for masking 'n\_window', 'n\_sampling'; is activated by passing dictionary compression\_dict
- Masks for profile and wake function are introduced in process()
- Method induced\_voltage\_1turn() is overridden; SciPy fftconvolve is used for speed-up

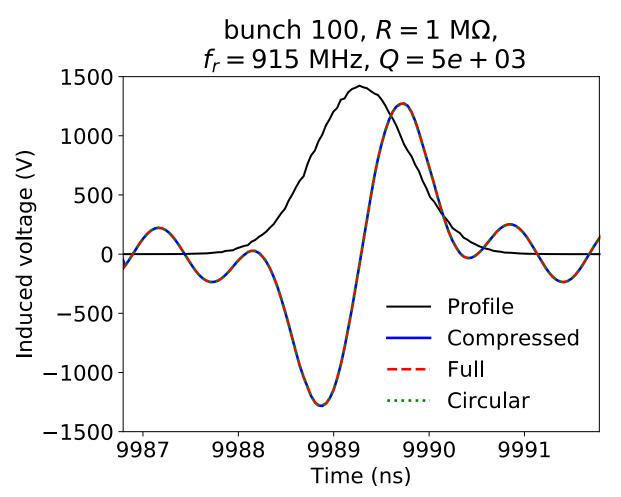

\*More details in fork <a href="https://github.com/lEKarpov/BLonD">https://github.com/lEKarpov/BLonD</a>

# Example EX\_23\_compressed\_wake.py

Simulation set-up:

- SPS flat bottom
- 200 bunches spaced by 100 ns (20 RF buckets)
- Single resonator impedance

Comparison of full, compressed and frequency domain calculations




## Example EX\_23\_compressed\_wake.py

Simulation set-up:

- SPS flat bottom
- 200 bunches spaced by 100 ns (20 RF buckets)
- Single resonator impedance

Comparison of full, compressed and frequency domain calculations



#### Small performance test

induced\_voltage\_sum() is called 50 times MEAN and STD values are calculated

> 200 bunches spaced by 100 ns (20 RF buckets), n\_window = 2\*n\_slices\_per\_bucket Compressed convolution: mean 9.483e-03 s, std 1.843e-03 s Full convolution: mean 5.931e-02 s, std 3.375e-03 s Frequency domain: mean 2.751e-02 s, std 1.562e-03 s Speed-up vs full convolution 6.25 Speed-up vs frequency domain 2.90

#### Small performance test

```
induced_voltage_sum() is called 50 times
MEAN and STD values are calculated
200 bunches spaced by 100 ns (20 RF buckets), n_window = 1.5*n_slices_per_bucket
Compressed convolution: mean 9.103e-03 s, std 1.331e-03 s
Full convolution: mean 1.240e-01 s, std 3.327e-02 s
Frequency domain: mean 5.121e-02 s, std 1.153e-02 s
Speed-up vs full convolution 13.62
Speed-up vs frequency domain 5.62
```

#### Small performance test

induced\_voltage\_sum() is called 50 times MEAN and STD values are calculated

```
500 bunches spaced by 25 ns (5 RF buckets), n_window = 1.5*n_slices_per_bucket
Compressed convolution: mean 1.375e-02 s, std 2.328e-03 s
Full convolution: mean 4.194e-02 s, std 2.280e-03 s
Frequency domain: mean 1.828e-02 s, std 1.129e-03 s
Speed-up vs full convolution 3.05
Speed-up vs frequency domain 1.33
```

# Summary and outlook

- First version of compressed FFT convolution is implemented.
- Can be easily activated, but profile object need to be carefully generated.
- Factor of 6-13 speed-up is achieved for example case.
- Further optimization potentially can be done.

Thank you!

#### **Smaller window function**

n\_window = 1.5\*n\_slices\_per\_bucket bunch 100,  $R = 1 M\Omega$ , bunch 0,  $R = 1 M\Omega$ ,  $f_r = 915$  MHz, Q = 5e + 03 $f_r = 915$  MHz, Q = 5e + 031500 1500 1000 1000 Induced voltage (V) 500 500 0 0 Profile Profile -500 -500Compressed Compressed Full Full -1000-1000Circular Circular -1500--15009987 9988 9989 9991 3 9990 0 1 2 4 Time (ns) Time (ns)

Induced voltage (V)