
Conv2d and ConvTransposed2d

Chiaki Yanagisawa

Water Cherenkov with Deep Learning Zoom meeting

2/19/2021

Our Network

self._upconvs = torch.nn.Sequential(
torch.nn.ConvTranspose2d(64, 64, 4, 2), torch.nn.ReLU(),

24 x 44
torch.nn.Conv2d(64, 64, 3), torch.nn.ReLU(), # 22 x 42

torch.nn.ConvTranspose2d(64, 32, 4, 2), torch.nn.ReLU(),
46 x 86

torch.nn.Conv2d(32, 32, 3), torch.nn.ReLU(), # 44 x 84

torch.nn.ConvTranspose2d(32, 32, 4, 2), torch.nn.ReLU(),
90 x 170

torch.nn.Conv2d(32, 3, 3) # 88 x 168
)

Conv2d

class torch.nn.Conv2d(in_channels: int, out_channels: int, kernel_size: Union[T, Tuple[T, T]],
stride: Union[T, Tuple[T, T]] = 1, padding: Union[T, Tuple[T, T]] = 0, dilation: Union[T,
Tuple[T, T]] = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros’)

Input : (N, Cin, Hin, Win) N = batch size, Cin = input channels, Hin = input height, Win = input height

Output: (N, Cout, Hout, Wout) N = batch size, Cout = output channels, Hout = output height, Wout = output height

𝐻𝑜𝑢𝑡 =
𝐻𝑖𝑛 + 2 × padding[0] − dilation[0] × (kernel_size[0] − 1) − 1

stride[0]
+ 1

𝑊𝑜𝑢𝑡 =
𝑊𝑖𝑛 + 2 × padding[1] − dilation[1] × (kernel_size[1] − 1) − 1

stride[1]
+ 1

Convolution

Convolution

Example 1: Convolution With Stride 1, No Padding
nn.Conv2d(in_channels, out_channels, kernel_size=2, stride=1)

In this first simple example we apply a 2 by 2 kernel to an input of size 6 by 6, with stride 1.

https://en.wikipedia.org/wiki/Kernel_(image_processing)

Convolution

Example 2: Convolution With Stride 2, No Padding
nn.Conv2d(in_channels, out_channels, kernel_size=2, stride=2)

This second example is the same as the previous one, but we now have a stride of 2.

Convolution

Example 3: Convolution With Stride 2, With Padding
nn.Conv2d(in_channels, out_channels, kernel_size=2, stride=2, padding=1)

This third example is the same as the previous one, but this time we use a padding of 1.

ConvTransposed2d

class torch.nn.ConvTranspose2d(in_channels: int, out_channels: int, kernel_size: Union[T, Tuple[T, T]], stride:
Union[T, Tuple[T, T]] = 1, padding: Union[T, Tuple[T, T]] = 0, output_padding:
Union[T, Tuple[T, T]] = 0, groups: int = 1, bias: bool = True, dilation: int = 1,
padding_mode: str = 'zeros')

Input : (N, Cin, Hin, Win) N = batch size, Cin = input channels, Hin = input height, Win = input height

Output: (N, Cout, Hout, Wout) N = batch size, Cout = output channels, Hout = output height, Wout = output height

Transposed Convolution

𝐻𝑜𝑢𝑡 = (𝐻𝑖𝑛 − 1) × stride[0]− 2 × padding[0] + dilation[0]×(kernel_size[0]− 1)
+ output_padding[0]+1

𝑊𝑜𝑢𝑡 = (𝑊𝑖𝑛 − 1)× stride[1]− 2 × padding[1] + dilation[1]×(kernel_size[1]− 1)
+ output_padding[1]+1

Transposed Convolution

Example 5: Transpose Convolution With Stride 2, No Padding
nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2, padding=0)

The transpose convolution is commonly used to expand a tensor to a larger tensor. This is the opposite of a normal
convolution which is used to reduce a tensor to a smaller tensor.

Transposed Convolution
Example 6: Transpose Convolution With Stride 1, No Padding
nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=1, padding=0)

In the previous example we used a stride of 2 because it is easier to see how it is used in the process. In this example we
use a stride of 1.

Transposed Convolution
Example 7: Transpose Convolution With Stride 2, With Padding
nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2, padding=1)

In this transpose convolution example we introduce padding. Unlike the normal convolution where padding is used to
expand the image, here it is used to reduce it.

Our Network

self._upconvs = torch.nn.Sequential(
torch.nn.ConvTranspose2d(64, 64, 4, 2), torch.nn.ReLU(),

24 x 44
torch.nn.Conv2d(64, 64, 3), torch.nn.ReLU(), # 22 x 42

torch.nn.ConvTranspose2d(64, 32, 4, 2), torch.nn.ReLU(),
46 x 86

torch.nn.Conv2d(32, 32, 3), torch.nn.ReLU(), # 44 x 84

torch.nn.ConvTranspose2d(32, 32, 4, 2), torch.nn.ReLU(),
90 x 170

torch.nn.Conv2d(32, 3, 3) # 88 x 168
)

Upconv Layers of Our Network

First layer

Input ch = 64, output ch = 64, Hin = 11, Win = 21, kernel size = 4, stride = 2, dilation = 1, padding = 0,

output padding = 0

ConvTranse2d(64, 64, 4, 2) : Hout = (11 – 1) x 2 – 2 x 0 + 1 x (4 – 1) + 0 + 1 = 24

Wout = (21 – 1) x 2 – 2 x 0 + 1 x (4 – 1) + 0 + 1 = 44

Input ch = 64, output ch = 64, Hin = 24, Win = 44, kernel size = 3, stride = 1, dilation = 1, padding = 0,

output padding = 0

Conv2d(64, 64, 3) : Hout = [24 – 2 x 0 - 1 x (3 – 1) – 1]/1 + 1 = 22

Wout = [44 – 2 x 0 - 1 x (3 – 1) – 1]/1 + 1 = 42

Upconv Layers of Our Network

Second layer

Input ch = 64, output ch = 32, Hin = 22, Win = 42, kernel size = 4, stride = 2, dilation = 1, padding = 0,

output padding = 0

ConvTranse2d(64, 32, 4, 2) : Hout = (22 – 1) x 2 – 2 x 0 + 1 x (4 – 1) + 0 + 1 = 46

Wout = (42 – 1) x 2 – 2 x 0 + 1 x (4 – 1) + 0 + 1 = 86

Input ch = 32, output ch = 32, Hin = 46, Win = 86, kernel size = 3, stride = 1, dilation = 1, padding = 0,

output padding = 0

Conv2d(32, 32, 3) : Hout = [46 – 2 x 0 - 1 x (3 – 1) – 1]/1 + 1 = 44

Wout = [86 – 2 x 0 - 1 x (3 – 1) – 1]/1 + 1 = 84

Upconv Layers of Our Network

Third layer

Input ch = 32, output ch = 32, Hin = 44, Win = 84, kernel size = 4, stride = 2, dilation = 1, padding = 0,

output padding = 0

ConvTranse2d(64, 32, 4, 2) : Hout = (44 – 1) x 2 – 2 x 0 + 1 x (4 – 1) + 0 + 1 = 90

Wout = (84 – 1) x 2 – 2 x 0 + 1 x (4 – 1) + 0 + 1 = 170

Input ch = 32, output ch = 1, Hin = 90, Win = 170, kernel size = 3, stride = 1, dilation = 1, padding = 0,

output padding = 0

Conv2d(32, 1, 3) : Hout = [90 – 2 x 0 - 1 x (3 – 1) – 1]/1 + 1 = 88

Wout = [170 – 2 x 0 - 1 x (3 – 1) – 1]/1 + 1 = 168

Note: 88 x 168 = 64 x 11 x 21= 14784

Upconv Layers of Original Paper

Bed of nails upsampling

Upsampling

Nearest-Neighbor Bed of Nails Interpolation

Bilinear,….

• The transposed convolution is the cause of the checkerboard artifacts in generated images.

• Some recommend an upsampling operation (i.e. interpolation method) followed by a convolution that preserves the

image size to reduce such effects.

• The weights in the transposed convolution are learnable, while the upsampling operation is not learnable.

References

• https://arxiv.org/pdf/1603.07285.pdf

• Slides by Karan Yang on 9/13/2019 (I will post it at CERN) at this meeting

• https://distill.pub/2016/deconv-checkerboard/

• https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d

• https://makeyourownneuralnetwork.blogspot.com/2020/02/calculating-output-size-of-convolutions.html

• https://medium.com/jun-devpblog/dl-12-unsampling-unpooling-and-transpose-convolution-831dc53687ce

https://arxiv.org/pdf/1603.07285.pdf
https://distill.pub/2016/deconv-checkerboard/
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://makeyourownneuralnetwork.blogspot.com/2020/02/calculating-output-size-of-convolutions.html
https://medium.com/jun-devpblog/dl-12-unsampling-unpooling-and-transpose-convolution-831dc53687ce

Our Network

