QCD and Event Generators

Lecture 1 of 2

Adil Jueid

Konkuk University
(Seoul, Republic of Korea)

Some slides of these Lectures are based on:

- talk by P. Skands at HCPSS, 2020
- Lectures by T. Sjöstrand at Lund, 2018

Contents:

A. Fixed-order QCD.
 B. All-orders QCD: Parton showers and Merging.
 C. Hadronisation (tutorials?).

Some excellent references

- Peter Skands, "Introduction to QCD", arXiv:1207.2389.
- Michelangelo Mangano, "OCD and the physics of Hadronic collisions", CERN Yellow Rep.School Proc. 4 (2018) 27-62.
- MCnet review, "General-Purpose Event Generators", Phys. Rept. 504 (2011) 145.
- J. Campbell, J. Huston, F. Krauss, "The Black Book of Quantum Chromodynamics: a Primer for the LHC era", Oxford University Press.
- G. Dissertori, I. Knowles, M. Schmelling, "Quantum Chromodynamics: High Energy Experiments and Theory", Oxford Science Publications.
- R. K. Ellis, W. J. Stirling, B. R. Webber, "QCD and Collider Physics", Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology.
"The mathematics clearly called for a set of underlying elementary objects-at that time we needed three types of them-elementary objects that could be combined three at a time in different ways to make all the heavy particles we knew. ... I needed a name for them and called them quarks, after the taunting cry of the gulls, "Three quarks for Muster mark," from Finnegan's Wake by the Irish writer James Joyce", Murray Gell-Mann

Why QCD is important?

Quantum Chromodynamics or QCD is a quantum field theory which describes the strong interaction between quarks (constituents of the hadrons) and gluons.

Only these states feel the
strong
interaction

Hadronic collisions involve protons in the initial state
Even for electroweak physics, lepton and photon isolation depends on the QCD interaction (e.g. photons misidentified as QCD jets).
Searching for new physics beyond the SM does not exclusively involve leptons.
New physics searches involves lots of backgrounds of QCD nature.
Higher order corrections are important to make the theory uncertainties under control. However, the higher we go in perturbation theory the more QCD is involved.
Dark-matter annihilation leads to final-states particles whose spectra depend on OCD.
The study of secondary cosmic rays depend on OCD and challenges existing models of fragmentation.
QCD is based on $S U(3)$ which is the richest gauge group we have so far: many studies are ongoing on unitarity properties, color structure, nonperturbative dynamics...etc.

First Hint for colour charge

The Δ^{++}baryon discovered in 1951 has bring the first hint for color

This configuration is
symmetric while the overall fermionic wave function should be anti-symmetric

$$
\text { Note that this is a fermion (} S=3 / 2 \text {) }
$$

Almost fourteen years after the discovery of Δ^{++}, this puzzle has been solved by the introduction of a new quantum number; the color charge. Each quark comes with three different colors (let's call them red, blue and green): $N_{c}=3$. splittings within a representation of the first $S U(3)$.

Further evidence for colour

Measurement of the decay width of $\pi^{0} \rightarrow \gamma \gamma$

$$
\Gamma(\pi \rightarrow \gamma \gamma)=\frac{\alpha_{e}^{2}}{64 \pi^{3}} \frac{m_{\pi}^{3}}{F_{\pi}^{2}} N_{c}^{2}\left[\left(\frac{2}{3}\right)^{2}-\left(\frac{1}{3}\right)^{2}\right]^{2}
$$

Measurement of the R-ratio in $e^{+} e^{-}$collisions

$$
R \equiv \frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=\sum_{i \in \mathrm{quarks}} Q_{i}^{2} N_{c}
$$

The QCD Lagrangian

Let's write the Lagrangian for the free quark field

$$
\mathscr{L}=i \bar{q}_{\alpha}^{i} \gamma_{\alpha \beta}^{\mu} \partial_{\mu} q_{\beta}^{i}-m_{q} \bar{q}_{\alpha}^{i} q_{\alpha}^{i} \quad \text { with } \quad q_{\alpha}^{i}=\left(\begin{array}{l}
q_{\alpha} \\
q_{\alpha} \\
q_{\alpha}
\end{array}\right)
$$

Under the following transformation under $S U(3)$

$$
U(x)=e^{i T_{a} \theta_{a}(x)}
$$

The Lagrangian \mathscr{L} transforms as
with T_{a} are the generators of the $\mathrm{SU}(3)$
Lie group $\Longrightarrow\left[T_{a}, T_{b}\right]=i f_{a b c} T_{c^{\prime}}$
$\theta_{a}(x) ; a=1, \ldots, 8$ are real parameters.
$f_{a b c}$ are the structure constants

$$
\begin{aligned}
\mathscr{L} & \rightarrow i \bar{q}^{i}(x) \gamma^{\mu} \partial_{\mu} q^{i}(x)-m_{q} \bar{q}^{i}(x) q^{i}(x)+\bar{q}^{i}(x) \gamma^{\mu} U^{-1}(x)\left(\partial_{\mu} U(x)\right) q^{i}(x) \\
& \rightarrow \mathscr{L}+\bar{q}^{i}(x) \gamma^{\mu} U^{-1}(x)\left(\partial_{\mu} U(x)\right) q^{i}(x) \quad \text { not invariant under local SU(3) transformations!!! }
\end{aligned}
$$

The QCD Lagrangian

We introduce a spin-1 field \mathscr{B}_{μ} which can be represented by a 8×8 matrix (in colour space). Suppose that $\mathscr{B}_{\mu}(x)$ transforms as

$$
\mathscr{B}_{\mu}(x) \rightarrow U(x) \mathscr{B}_{\mu}(x) U^{-1}(x)+U(x)\left(\partial_{\mu} U^{-1}(x)\right)
$$

Now, the Lagrangian

$$
\mathscr{L}=i \bar{q}^{i}\left(\partial_{\mu}+\mathscr{B}_{\mu}\right) q^{i}-m_{q} \bar{q}^{i} q^{i}
$$

transforms as

$$
\begin{aligned}
\mathscr{L} & \rightarrow i \bar{q}^{i}(x) \gamma^{\mu} \partial_{\mu} q^{i}(x)-m_{q} \bar{q}^{i}(x) q^{i}(x)+i \bar{q}^{i}(x) \gamma^{\mu} U^{-1}(x)\left(\partial_{\mu} U(x)\right) q^{i}(x) \\
& +i \bar{q}^{i}(x) \gamma^{\mu} \mathscr{B}_{\mu}(x) q^{i}(x)+i \bar{q}^{i}(x) \gamma^{\mu}\left(\partial_{\mu} U^{-1}(x)\right) U(x) q^{i}(x) \\
& =\mathscr{L}+i \bar{q}^{i}(x) \gamma^{\mu} U^{-1}(x)\left(\partial_{\mu} U(x)\right) q^{i}(x)+i \bar{q}^{i}(x) \gamma^{\mu}\left(\partial_{\mu} U^{-1}(x)\right) U(x) q^{i}(x) \\
& =\mathscr{L}+i \bar{q}^{i}(x) \gamma^{\mu} \partial_{\mu}\left(U^{-1}(x) U(x)\right) q^{i}(x)=\mathscr{L} \quad \text { Invariant! }
\end{aligned}
$$

The QCD Lagrangian

We need fields which propagate in space-time \Longrightarrow construct the kinetic energy term for $\mathscr{B}_{\mu}(x)$
with

$$
\mathscr{L}_{\text {kinetic }} \equiv \frac{1}{4 g_{s}^{2}} \operatorname{Tr}\left(F_{\mu \nu} F^{\mu \nu}\right)
$$

$$
F_{\mu \nu}=\partial_{\mu} \mathscr{B}_{\nu}-\partial_{\nu} \mathscr{B}_{\mu}+\left[\mathscr{B}_{\mu}, \mathscr{B}_{\nu}\right]
$$

It is easy to check that

$$
F_{\mu \nu} \rightarrow U(x) F_{\mu \nu} U^{-1}(x)
$$

Remember that $\mathscr{B}_{\mu}(x) \in S U(3) \Longrightarrow$ can be expanded in terms of the generators $\left(T_{a}\right)$ of $S U(3)$

$$
\left(\mathscr{B}_{\mu}\right)_{i j}=-i g_{s} T_{i j}^{a} A_{\mu}^{a} \quad \begin{aligned}
& A_{\mu}^{a} \text { is the gauge field (there are } 8 \text { of } \\
& \text { them) and } g_{s} \text { is the coupling constant }
\end{aligned}
$$

$$
\mathscr{L}=-\frac{1}{4} G_{\mu \nu}^{a} G^{a, \mu \nu}+i \bar{q}_{\alpha}^{i}\left(\gamma^{\mu}\right)_{\alpha \beta}\left(\delta_{i j} \partial_{\mu}-i g_{s} T_{i j}^{a} A_{\mu}^{a}\right) q_{\beta}^{j}-m_{q} \bar{q}_{\alpha}^{i} q_{\alpha}^{i}
$$

and

$$
G_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g_{s} f_{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

We constructed the QCD Lagrangian Let us study its implications!!!

Gell-Mann Malrices

The generators of $\mathrm{SU}(3)$ are defined as (traceless and Hermitian)

$$
\begin{array}{r}
\operatorname{Tr}\left(T_{a} T_{b}\right)=g_{a b}=T_{F} \delta_{a b} \\
\text { Cartan metric; } g_{a b}=-f_{a m n} f_{b n m}
\end{array}
$$

IMPORTANT NOTE: If you change this convention, you have to change the definition of the coupling constant g_{s}, since $g_{s} T_{a}$ appears in the OCD Lagrangian (see previous slide).

We can choose a parameterization of T_{a} such that $T_{F}=1 / 2$; i.e. define $T_{a}=\frac{1}{2} \lambda_{a}$

$$
\begin{aligned}
& \lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& \lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
\end{aligned}
$$

Interactions in Colour Space

$$
\frac{\mathscr{L}_{q \bar{q} g}: \bar{q}_{\alpha}^{i}\left(i \gamma^{\mu}\right)_{\alpha \beta}\left(D_{\mu}\right)_{i j} q_{\beta}^{j}}{\left(D_{\mu}\right)_{i j}=\delta_{i j} \partial_{\mu}-i g_{s} T_{i j}^{a} A_{\mu}^{a}}
$$

Gluon (adjoint) colour index $\in[1,8]$
Gluon Lorentz-vector index $\in[0,3]$

The matrix-element calculations involve two independent parts: color space and Lorentz space. Let us focus on the color space first.

Interackions in Colour Space: Gluon self-incerackions

Note about $f^{a b c}$:

- $f_{a b c}$ are called the structure constants of the $\mathrm{SU}(3)$ group.
- They uniquely define its structure.
- They can provide a representation for $\mathrm{SU}(3)$ - called the adjoint representation 一, if we define $\left(T_{a}\right)_{b c}=-i f_{a b c}$ we have $\left[T_{a}, T_{d}\right]=i f_{\text {ade }} T_{e}$

More about colour algebra

z Decay: (aka color-singlet decays)

$$
\sum_{\text {colors }}|\mathscr{M}|^{2} \equiv \min _{\delta_{i j}}^{q /} \sum_{q}^{q} \delta_{q} \quad \propto \delta_{i j} \delta_{j i}^{*}=\operatorname{Tr}\left(\delta_{i j}\right)=N_{c}
$$

$$
\frac{1}{N_{c}^{2}} \sum_{\text {colors }}|\mathscr{M}|^{2} \equiv
$$

More about colour algebra

$z \rightarrow 3$ jets:

$$
\begin{array}{r}
\propto \delta_{i j} \delta_{l i}^{*} T_{j k}^{a} T_{k l}^{a}=T_{i k}^{a} T_{k i}^{a}=\left(T^{a} T^{a}\right)_{i i} \\
=T_{F} \operatorname{Tr}\left(\delta^{a a}\right)=\left(N_{c}^{2}-1\right) T_{F}
\end{array}
$$

$$
\propto \sum_{a}\left(T_{a} T_{a}\right)_{i j}=C_{F} \delta_{i j} \Longrightarrow T_{F} \delta_{a a}=T_{F}\left(N_{c}^{2}-1\right)
$$

$$
\Longrightarrow C_{F}=T_{F} \frac{N_{c}^{2}-1}{N_{c}}
$$

Break: An important relation

PROOF

$$
T_{i j}^{a} T_{k l}^{a}=\frac{1}{2}\left(\delta_{i l} \delta_{j k}-\frac{1}{N_{c}} \delta_{i j} \delta_{k l}\right)
$$

Let \mathbb{M} be an arbitrary Hermitian $N_{c} \times N_{c}$ matrix. It can be expanded as:

$$
\mathbb{M} \equiv \alpha_{0} \square_{N_{c}}+\alpha_{a} T^{a} ; \alpha_{0}, \alpha_{a} \in \mathbb{R}
$$

The coefficients (α_{0} and α_{a}) can be estimated from the traces over \mathbb{M} and $T^{a} \mathbb{M}$. We have:
$\alpha_{0}=\frac{1}{N_{c}} \operatorname{Tr}(\mathbb{M})$ and $\left.\alpha_{a}=\frac{1}{T_{F}} \operatorname{Tr}\left(\mathbb{M} T^{a}\right) \Longrightarrow \mathbb{M}=\frac{1}{N_{c}} \operatorname{Tr}(\mathbb{M})\right]_{N_{c}}+\frac{1}{T_{F}} \operatorname{Tr}\left(T^{a} \mathbb{M}\right) T^{a}$
Now, let us take the (i, j) element of the matrix \mathbb{M}
$\mathbb{M}_{i j}=\frac{1}{N_{c}} \mathbb{M}_{k k} \delta_{i j}+\frac{1}{T_{F}}\left(T^{a} \mathbb{M}\right)_{k k} T_{i j}^{a}=\frac{1}{N_{c}} \mathbb{M}_{k k} \delta_{i j}+\frac{1}{T_{F}} T_{k l}^{a} \mathbb{M}_{l k} T_{i j}^{a}$
$\operatorname{Or} \mathbb{M}_{i j}=\mathbb{M}_{l k}\left(\frac{1}{N_{c}} \delta_{k l} \delta_{i j}+\frac{1}{T_{F}} T_{k l}^{a} T_{i j}^{a}\right) \Longrightarrow T_{i j}^{a} T_{k l}^{a}=T_{F}\left(\delta_{i l} \delta_{j k}-\frac{1}{N_{c}} \delta_{i j} \delta_{k l}\right)$
$\delta_{i k} \delta_{j k}$
$\operatorname{Tr}(\mathbb{M})=\alpha_{0} \operatorname{Tr}\left(\mathbb{D}_{N_{c}}\right)+\alpha_{a} \operatorname{Tr}\left(T^{a}\right)=\alpha_{0} N_{c} \Longrightarrow \alpha_{0}=\frac{1}{N_{c}} \operatorname{Tr}(\mathbb{M})$
$=N_{c} \quad=0 \quad \operatorname{Tr}\left(\mathbb{M} T^{a}\right)=\alpha_{0} \operatorname{Tr}\left(T^{a}\right)+\alpha_{b} \operatorname{Tr}\left(T^{a} T^{b}\right)=\alpha_{b} T_{F} \delta_{a b} \Longrightarrow \alpha_{a}=\frac{1}{T_{F}} \operatorname{Tr}\left(\mathbb{M} T^{a}\right)$

Return to colour algebra

$q \bar{q} \rightarrow q \bar{q}$ at the one-loop order:

$$
\begin{aligned}
& \propto T_{i k}^{a} T_{k i}^{b} T_{j l}^{a} T_{l j}^{b}=\operatorname{Tr}\left(T^{a} T^{b}\right) \operatorname{Tr}\left(T^{a} T^{b}\right) \\
& =T_{F}^{2} \delta_{a b} \delta_{a b}=T_{F}^{2}\left(N_{c}^{2}-1\right) \\
& =T_{F} C_{A} C_{F}
\end{aligned}
$$

After averaging over the initial colors, we get $\quad \frac{1}{N_{C}^{2}} C_{A} C_{F} T_{F}=\frac{T_{F} C_{F}}{C_{A}}$
$g g \rightarrow g g$ at the one-loop order:

$$
\begin{aligned}
& \propto T_{j i}^{a} T_{i l}^{b} T_{l k}^{b} T_{k j}^{a}=\left(T_{j i}^{a} T_{k j}^{a}\right)\left(T_{i l}^{b} T_{l k}^{b}\right) \\
& =T_{F}^{2}\left(\delta_{j j} \delta_{i k}-\frac{1}{N_{c}} \delta_{j i} \delta_{k j}\right)\left(\delta_{i k} \delta_{l l}-\frac{1}{N_{c}} \delta_{i l} \delta_{l k}\right) \\
& =T_{F}^{2}\left(N_{c}-\frac{1}{N_{c}}\right)^{2} \delta_{i k} \delta_{k i}=T_{F}^{2} N_{c}\left(\frac{N_{c}^{2}-1}{N_{c}}\right)^{2}=C_{F}^{2} C_{A}
\end{aligned}
$$

Can we calculate LHC processes now?

What are we really colliding?
Take a look at the quantum level

PDFs: $f_{i}\left(x, Q_{F}^{2}\right) \quad i \in[g, u, d, s, c,(b),(t),(\gamma),(\ell)]$
Probability to find parton of flavour i with momentum fraction $x=p_{i} / p_{\text {hadron }}$, as function of "resolution scale" $Q_{F} \sim$ virtuality / inverse lifetime of fluctuation

Why PDFs work 1: heuristic explanation

```
Lifetime of typical fluctuation }\approx\mp@subsup{r}{p}{\prime}/c(=time it takes light to cross a proton
\approx10-23}\mathrm{ seconds; Corresponds to a frequency of }~500\mathrm{ billion THz
To the LHC, that's slow! (reaches "shutter speeds" thousands of times faster)
Planck-Einstein: }E=h\nu\Longrightarrow\mp@subsup{\nu}{\textrm{LHC}}{}=13\textrm{TeV}/h=3.14\mathrm{ million billion THz
\Longrightarrow ~ P r o t o n s ~ l o o k ~ " f r o z e n " ~ a t ~ m o m e n t ~ o f ~ c o l l i s i o n
But they have a lot more than just two "u" quarks and a "d" inside
Difficult/impossible to calculate, so use statistics to parametrise the structure: parton distribution functions (PDFs)
Every so often I will pick a gluon, every so often a quark (antiquark)
Measured at previous colliders (+ increasingly also at LHC)
Expressed as functions of energy fractions, \(x\), and resolution scale, \(\mathrm{Q}^{2}\)
+ obey known scaling laws \(\mathrm{df} / \mathrm{dQ}^{2}\) : "DGLAP equations".
```


Deep Inelaskic Scaltering (DIS)

Why PDFs work 2: factorisation in DIS

We assume* that an

 analogous factorisation works for pp*caveats are beyond the scope
of this course
\rightarrow The cross section can be written in factorised form :

Factorisation \Longrightarrow we can still calculate!

PDFs: connect incoming hadrons with the high-scale process
Fragmentation Functions: connect high-scale process with final-state hadrons
Both combine non-perturbative input + all-orders (perturbative) bremsstrahlung resummations

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} X}=\sum_{a, b} \sum_{f} \int_{\hat{X}_{f}} f_{a}\left(x_{a}, Q_{i}^{2}\right) f_{b}\left(x_{b}, Q_{i}^{2}\right) \frac{\mathrm{d} \hat{\sigma}_{a b \rightarrow f}\left(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2}\right)}{d \hat{X}_{f}} D\left(\hat{X}_{f} \rightarrow X, Q_{i}^{2}, Q_{f}^{2}\right)
$$

PDFs: needed to compute	Hard Process	FFs: needed to compute
inclusive cross sections	Fixed-Order QFT	(semi-)exclusive cross sections

In MCs \rightarrow initial-state radiation +		In MCs: resonance decays +
non-perturbative hadron (beam-	Matching	final-state radiation +
remnant) structure	\& Merging	hadronisation + hadron decays
+ multi-parton interactions		(+ final-state interactions?)

Beyond trees: Infinities

The QCD Lagrangian is no-linear in the fields \Longrightarrow Physical observables can only be computed approximatively.

Divergences (here called UV) mean that we cannot make predictions!

An ad-hoc solution is to cut-off the integral at some scale Λ_{c}

$$
\Longrightarrow \mathscr{I} \propto \log \left(\Lambda_{c}\right)
$$

$$
\begin{aligned}
& \text { Prescription leads to gauge dependent quantities }+ \text { add some arbitrariness } \\
& \text { to the theory predictions (dependence on an unknown parameter } \Lambda_{c} \text {) }
\end{aligned}
$$

Renormalization or infinities are not so scary

We say that the fields and parameter are just bare at a given order \Longrightarrow At the quantum level, the fields and parameters are defined as

$$
p_{i}^{0} \rightarrow Z_{p_{i}} p_{i} \text { and } \mathscr{F}_{i, 0} \rightarrow Z_{\mathscr{F}}^{1 / 2} \mathscr{F}_{i}
$$

+ suitable regularization scheme
In a nubshell
Choose a set of independent parameters in the theory. In QCD, we have only one parameter g_{s} (if we ignore quark masses).
- Split the bar parameters (fields) into renormalised parameters (fields) and counter-terms.
Find renormalisation conditions to fix the counter-terms.
- The final result should be free of UV infinities.

NOTE: There are further divergences for momenta $q \rightarrow 0$ (these are IR
divergences and should be treated separately)

Systematics of Renormalization

Application: the strong coupling constant

Let's return to the Lagrangian of $q \bar{q} g$ interaction (at the one-loop order)

$g_{s, 0}$ is independent of μ
\Longrightarrow differentiating with respect to μ gives

$$
\beta\left(g_{s}\right)=-\frac{\epsilon}{2} g_{s}+\frac{\epsilon}{2} g_{s}^{2} \frac{\partial}{\partial g_{s}}\left(\frac{Z_{1}}{Z_{2} \sqrt{Z_{3}}}\right) \quad \epsilon=4-D
$$

Application: the strong coupling constant

We need to truncate at the one-loop order; we define

$$
Z_{i}^{k}=1+k \delta_{i}+\mathcal{O}\left(\delta_{i}^{2}\right)
$$

$\Longrightarrow \delta_{i}$ can be computed from explicit evaluation of one-loop integrals (see e.g. Peskin \& Schroeder)

$$
\left[\begin{array}{l}
\delta_{1}=\frac{1}{\epsilon}\left(\frac{g_{s}}{4 \pi}\right)^{2}\left[-2 C_{F}-2 C_{A}+2(1-\xi)+\frac{1}{2}(1-\xi) C_{A}\right] \\
\delta_{2}=\frac{1}{\epsilon}\left(\frac{g_{s}}{4 \pi}\right)^{2}\left[-2 C_{F}+2(1-\xi) C_{F}\right] \\
\delta_{3}=\frac{1}{\epsilon}\left(\frac{g_{s}}{4 \pi}\right)^{2}\left[\frac{10}{3} C_{A}-\frac{8}{3} n_{f} T_{F}+(1-\xi) C_{A}\right]
\end{array}\right] \Longrightarrow \beta\left(g_{s}\right)=-\frac{\epsilon}{2} g_{s}-\frac{g_{s}^{3}}{16 \pi^{2}}\left[\frac{11}{3}-C_{F} n_{f} T_{F}\right]=-\frac{g_{s}^{3}}{16 \pi^{2}} \beta_{0}
$$

If we define the strong
coupling constant as:
$\alpha_{s}=\frac{g_{s}^{2}}{4 \pi}$
$\Longrightarrow \mu \frac{\mathrm{d}}{\mathrm{d} \mu} \alpha_{s}=-\frac{\alpha_{s}^{2}}{2 \pi} \beta_{0} \quad$ which can be solved to give

$$
\alpha_{s}(\mu)=\frac{2 \pi}{\beta_{0}} \frac{1}{\log \left(\frac{\mu}{\Lambda_{\mathrm{QCD}}}\right)}
$$

The strong coupling constant

The strong coupling is the main parameter of perturbative QCD calculations. It controls:

- The size of QCD cross sections (\& QCD partial widths for decays).
- The overall amount of QCD radiation (extra jets + recoil effects + jet substructure).
- Sizeable OCD "K Factors" to essentially all processes at LHC, and ditto uncertainties.

Nobel prize cilation (kaken from G. Salam's lalk)

"What this year's Laureates discovered was something that, at first sight, seemed completely contradictory. The interpretation of their mathematical result was that the closer the quarks are to each other, the weaker is the 'colour charge'. When the quarks are really close to
${ }^{*}$ e each other, the force charg is weak that they behave almost as free particles. This phenomenon is called 'asymptotic freedom'. The converse is true when the quarks move apart:
${ }^{* 2}$ the forentia becomes stronger when the distance increases."

Nobelprize.org
The Official Web Site of the Nobel Prize

The Nobel Prize in Physics 2004 David J. Gross, H. David Politzer, Frank Wilczek

H. David Politzer Frank Wilczek
David J. Gross The Nobel Prize in Physics 2004 . David vid J. Gross, H. David The Nobel Prize in Physics 2004 was awarded jointy to David J. Gross, H. David Politzer and Frank Wilczek \%or the discovery of asymptotic freedom in the theory of the strong interaction".

Photos: Copyright © The Nobel Foundation
${ }^{*}$ I The force still goes to ∞ as $r \rightarrow 0$
(Coulomb potential), just less slowly
${ }^{\text {2 }}$ The potential grows linearly as $\mathrm{r} \rightarrow \infty$, so the force actually becomes constant (even this is only true in "quenched" QCD. In real QCD, the force eventually vanishes for $r \gg$ Ifm)

Cross sections at Fixed order

Loops and Legs

Loops and Legs

Note: (X+1)-jet observables will of course only be correct to LO

Cross sections al NLO: a closer look

$$
\begin{aligned}
& \sigma_{\mathrm{X}}^{\mathrm{NLO}}=\int\left|M_{X}^{(0)}\right|^{2}+\int\left|M_{X+1}^{(0)}\right|^{2}+\iint_{\text {IR singularities }} 2 \operatorname{Re}\left[M_{X}^{(1)} M_{X}^{(0) *}\right] \\
& \text { (from poles of propagators going on shell) } \\
& \text { (note: not the } 1 \text {-loop diagram squared) } \\
& =\sigma_{\text {Born }}+\text { Finite }\left\{\int\left|M_{X+1}^{(0)}\right|^{2}\right\}+\text { Finite }\left\{\int 2 \operatorname{Re}\left[M_{X}^{(1)} M_{X}^{(0) *}\right]\right\} \\
& \left.\sigma_{\mathrm{NLO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)=\sigma_{\mathrm{LO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)\left(1+\frac{\alpha_{s}\left(E_{\mathrm{CM}}\right)}{\pi}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
\end{aligned}
$$

Not all observables can be computed perturbatively:

Collinear Safe

Virtual and Real go into same bins!

$\alpha_{s}^{n} \times(-\infty)$

$\alpha_{\mathrm{s}}^{n} \times(+\infty)$
Infinities cancel
(KLN: 'degenerate states')

Collinear Unsafe

Infinities do not cancel

Invalidates perturbation theory

Perturbatively Calculable \Leftrightarrow "Infrared and Collinear Safe"

SOFT radiation:

Adding any number of infinitely soft particles (zero-energy) should not change the value of the observable

COLLINEAR radiation:

Splitting an existing particle up into two comoving ones
(conserving the total momentum and energy)
should not change the value of the observable

Structure of NNLO calculation

