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A. Fixed-order QCD.

B. All-orders QCD: Parton showers and Merging.

C. Hadronisation (tutorials?).  

Some excellent references
• Peter Skands, “Introduction to QCD”,  arXiv:1207.2389.

• Michelangelo Mangano, “QCD and the physics of Hadronic collisions”, CERN Yellow Rep.School Proc. 4 

(2018) 27-62.

• MCnet review, “General-Purpose Event Generators”, Phys. Rept. 504 (2011) 145.

• J. Campbell, J. Huston, F. Krauss, “The Black Book of Quantum Chromodynamics: a Primer for the LHC 

era”, Oxford University Press.

• G. Dissertori, I. Knowles, M. Schmelling, “Quantum Chromodynamics: High Energy Experiments and 

Theory”, Oxford Science Publications.

• R. K. Ellis, W. J. Stirling, B. R. Webber, “QCD and Collider Physics”, Cambridge Monographs on Particle 

Physics, Nuclear Physics and Cosmology.
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“The mathematics clearly called for a set of underlying elementary objects-at that time we needed three types of them-elementary objects that 
could be combined three at a time in different ways to make all the heavy particles we knew. ... I needed a name for them and called them quarks, 
after the taunting cry of the gulls, "Three quarks for Muster mark," from Finnegan's Wake by the Irish writer James Joyce”, Murray Gell-Mann

Quantum Chromodynamics or QCD is a quantum 
field theory which describes the strong interaction 
between quarks (constituents of the hadrons) and 
gluons.

Only these 
states feel the 

strong 
interaction

Why QCD is important?
• Hadronic collisions involve protons in the initial state

• Even for electroweak physics, lepton and photon isolation depends on 

the QCD interaction (e.g. photons misidentified as QCD jets).

• Searching for new physics beyond the SM does not exclusively involve 

leptons.

• New physics searches involves lots of backgrounds of QCD nature.

• Higher order corrections are important to make the theory uncertainties 

under control. However, the higher we go in perturbation theory the 
more QCD is involved.


• Dark-matter annihilation leads to final-states particles whose spectra 
depend on QCD.


• The study of secondary cosmic rays depend on QCD and challenges 
existing models of fragmentation.


• QCD is based on SU(3) which is the richest gauge group we have so far: 
many studies are ongoing on unitarity properties, color structure, non-
perturbative dynamics...etc.



QCD and event generators Adil Jueid Konkuk University 4

The  baryon discovered in 1951 has bring the first hint for colorΔ++

|Δ++⟩ ∝ |u↑u↑u↑⟩
Note that this is a fermion ( )S = 3/2

Almost fourteen years after the discovery of , this puzzle has been solved by the introduction of a new quantum 
number; the color charge. Each quark comes with three different colors (let’s call them red, blue and green): .

Δ++

Nc = 3

This configuration is 
symmetric while the overall 
fermionic wave function 
should be anti-symmetric

First Hint for colour charge
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Measurement of the R-ratio in  collisions
e+e−

R ≡
σ(e+e− → hadrons)

σ(e+e− → μ+μ−)
= ∑

i∈quarks

Q2
i Nc

Measurement of the decay width of 
π0 → γγ

Γ(π → γγ) =
α2

e

64π3

m3
π

F2
π

N2
c [( 2

3 )
2

− ( 1
3 )

2

]
2

Further evidence for colour
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Let’s write the Lagrangian for the free quark field

ℒ = iq̄i
αγμ

αβ∂μqi
β − mqq̄i

αqi
α qi

α =
qα
qα
qα

with

The Lagrangian  transforms asℒ

ℒ → iq̄i(x)γμ∂μqi(x) − mqq̄i(x)qi(x) + q̄i(x)γμU−1(x)(∂μU(x))qi(x)

→ ℒ + q̄i(x)γμU−1(x)(∂μU(x))qi(x)

Under the following transformation under SU(3)

U(x) = eiTaθa(x) with  are the generators of the SU(3) 
Lie group , 

 are real parameters.

Ta
⟹ [Ta, Tb] = ifabcTc

θa(x); a = 1,…,8
 are the structure constantsfabc

not invariant under local SU(3) transformations!!!

The QCD Lagrangian
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We introduce a spin-1 field  which can be represented by a  matrix (in colour space). 
Suppose that  transforms as

ℬμ 8 × 8
ℬμ(x)

ℬμ(x) → U(x)ℬμ(x)U−1(x) + U(x)(∂μU−1(x))

Now, the Lagrangian
ℒ = iq̄i(∂μ + ℬμ)qi − mqq̄iqi,

transforms as

ℒ → iq̄i(x)γμ∂μqi(x) − mqq̄i(x)qi(x) + iq̄i(x)γμU−1(x)(∂μU(x))qi(x)
+iq̄i(x)γμℬμ(x)qi(x) + iq̄i(x)γμ(∂μU−1(x))U(x)qi(x)
= ℒ + iq̄i(x)γμU−1(x)(∂μU(x))qi(x) + iq̄i(x)γμ(∂μU−1(x))U(x)qi(x)
= ℒ + iq̄i(x)γμ∂μ(U−1(x)U(x))qi(x) = ℒ Invariant!

The QCD Lagrangian
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We need fields which propagate in space-time  construct the kinetic energy term for ⟹ ℬμ(x)

ℒkinetic ≡
1

4g2
s

Tr(FμνFμν),

Fμν = ∂μℬν − ∂νℬμ + [ℬμ, ℬν]
with It is easy to check that 

Fμν → U(x)FμνU−1(x)

Remember that can be expanded in terms of the generators  of ℬμ(x) ∈ SU(3) ⟹ (Ta) SU(3)

(ℬμ)ij = − igsTa
ij A

a
μ

 is the gauge field (there are 8 of 
them) and  is the coupling constant 
Aa

μ
gs

and
ℒ = −

1
4

Ga
μνGa,μν + iq̄i

α(γμ)αβ(δij∂μ − igsTa
ij A

a
μ)qj

β − mqq̄i
αqi

α

Ga
μν = ∂μAa

ν − ∂νAa
μ + gs fabcAb

μ Ac
ν We constructed the QCD Lagrangian


Let us study its implications!!!

The QCD Lagrangian
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The generators of SU(3) are defined as (traceless and Hermitian)  

Tr(TaTb) = gab = TFδab

λ1 = (
0 1 0
1 0 0
0 0 0), λ2 = (

0 −i 0
i 0 0
0 0 0), λ3 = (

1 0 0
0 −1 0
0 0 0), λ4 = (

0 0 1
0 0 0
1 0 0)

λ5 = (
0 0 −i
0 0 0
i 0 0 ), λ6 = (

0 0 0
0 0 1
0 1 0), λ7 = (

0 0 0
0 0 −i
0 i 0 ), λ8 =

1

3 (
1 0 0
0 1 0
0 0 −2)

We can choose a parameterization of  such that ; i.e. define  Ta TF = 1/2 Ta =
1
2

λa

IMPORTANT NOTE: If you change this 
convention, you have to change the definition 
of the coupling constant , since  appears 
in the QCD Lagrangian (see previous slide).

gs gsTa

Cartan metric; gab = − famn fbnm

Gell-Mann Matrices
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Amplitudes Squared summed over colors → 
traces over products of  matrices 

→ Color Factors (next slides)

Ta

ℒqq̄g : q̄i
α(iγμ)αβ(Dμ)ijq

j
β

(Dμ)ij = δij∂μ − igsTa
ij A

a
μ

The matrix-element calculations involve two 
independent parts: color space and Lorentz space. 
Let us focus on the color space first.

Fermion spinor indices ∈ [1,4]

Gluon Lorentz-vector index ∈ [0,3]

Gluon (adjoint) colour index ∈ [1,8]

Quark colour indices ∈ [1,3]

A4
μ

qα qβ

−igsT4
ijγ

μ
αβA4

μ

∝ −
i
2

gs q̄α λ4 qβ

−
i
2

gs (1 0 0) (
0 0 1
0 0 0
1 0 0) (

0
0
1)

Peter Skands (HCPSS 2020)

Interactions in Colour Space
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ℒgauge : −
1
4

Ga
μνGa,μν

Ga
μν = ∂μAa

ν − ∂νAa
μ + gs f abcAb

μ Ac
ν

Abelian non-Abelian

Gluon self-interactions:

                  ℒggg ℒgggg

⟹
−gs f abc(k3 − k2)ρgμν

−gs f abc(k2 − k1)μgνρ

−gs f abc(k1 − k3)νgρν

−g2
s f yac f ybd(gμνgρσ − gμσgνρ)

−g2
s f yad f ybc(gμνgρσ − gμρgνσ)

−g2
s f yab f ycd(gμρgνρ − gμσgνρ)(Absent in QED)

Note about  : f abc

•  are called the structure constants of the SU(3) group.

• They uniquely define its structure.

• They can provide a representation for SU(3) — called the 

adjoint representation —, if we define  we 
have 

fabc

(Ta)bc = − ifabc
[Ta, Td] = ifadeTe

f123 = 1
f147 = f246 = f257 = f345 = 1

f156 = f367 = −
1
2

f458 = f678 =
3

2
fabc = − fbac for a, b, c ∈ [1,8]
faab = fabb = 0 for a, b ∈ [1,8]

faaa = 0 for a ∈ [1,8]

Interactions in Colour Space: Gluon self-interactions
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Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

∑
colors

|ℳ |2 ≡
δij δij

Z Decay: (aka color-singlet decays)

∝ δijδ*ji = Tr(δij) = Nc

Drell-Yan ( )qq̄ → Z*

δij 11
N2

c ∑
colors

|ℳ |2 ≡ 1 δij ∝ δijδ*ji
1

N2
c

=
Tr(δij)

N2
c

=
1
Nc

More about colour algebra
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i j
Ta

ik Ta
kj

Z —> 3 jets:

∑
colors

|ℳ |2 ≡ δij

Ta
jk

i

j k

a

δil

Ta
kl

i

k

a

l ∝ δijδ*li Ta
jkT

a
kl = Ta

ikT
a
ki = (TaTa)ii

= TFTr(δaa) = (N2
c − 1)TF

Quark self-energy

∝ ∑
a

(TaTa)ij = CFδij ⟹ TFδaa = TF(N2
c − 1)

⟹ CF = TF
N2

c − 1
Nc

More about colour algebra
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Ta
ijT

a
kl =

1
2 (δilδjk −

1
Nc

δijδkl)PROOF

Tr(𝕄) = α0Tr(𝕀Nc
) + αaTr(Ta) = α0Nc ⟹ α0 =

1
Nc

Tr(𝕄)

Tr(𝕄Ta) = α0Tr(Ta) + αbTr(TaTb) = αbTFδab ⟹ αa =
1
TF

Tr(𝕄Ta)= Nc = 0

Let  be an arbitrary Hermitian  matrix. It can be expanded as:

 


The coefficients ( ) can be estimated from the traces over . We have:


 and 


Now, let us take the  element of the matrix 





Or  

𝕄 Nc × Nc
𝕄 ≡ α0𝕀Nc

+ αaTa; α0, αa ∈ ℝ
α0 and αa 𝕄 and Ta𝕄

α0 =
1
Nc

Tr(𝕄) αa =
1
TF

Tr(𝕄Ta) ⟹ 𝕄 =
1
Nc

Tr(𝕄)𝕀Nc
+

1
TF

Tr(Ta𝕄)Ta

(i, j) 𝕄

𝕄ij =
1
Nc

𝕄kkδij +
1
TF

(Ta𝕄)kkTa
ij =

1
Nc

𝕄kkδij +
1
TF

Ta
kl𝕄lkTa

ij

𝕄ij = 𝕄lk ( 1
Nc

δklδij +
1
TF

Ta
klT

a
ij) ⟹ Ta

ijT
a
kl = TF (δilδjk −

1
Nc

δijδkl)
δikδjk

Break: An important relation
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 at the one-loop order:qq̄ → qq̄

Ta
ik

Ta
jl Tb

lj

Tb
ki ∝ Ta

ikT
b
kiT

a
jlT

b
lj = Tr(TaTb)Tr(TaTb)

= T2
Fδabδab = T2

F(N2
c − 1)

= TFCACF

After averaging over the initial colors, we get 1
N2

c
CACFTF =

TFCF

CA

Ta
ji Ta

kj

Tb
il Tb

lk

∝ Ta
jiT

b
ilT

b
lkT

a
kj = (Ta

jiT
a
kj)(T

b
ilT

b
lk)

= T2
F (δjjδik −

1
Nc

δjiδkj) (δikδll −
1
Nc

δilδlk)
= T2

F (Nc −
1
Nc )

2

δikδki = T2
FNc ( N2

c − 1
Nc )

2

= C2
FCA

 at the one-loop order:gg → gg

Return to colour algebra
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u u

d

z}|{ <latexit sha1_base64="5908dNHyEDP1woOqzatAGLOe9XI=">AAACKXiclVBNSwMxEM36WevXqkcvwSJ4KrtV0GPRi8cK9gPapWTT2TY0myxJVihL/Tle/CteFBT16h8xbfegrRcfDDzem2FmXphwpo3nfThLyyura+uFjeLm1vbOrru339AyVRTqVHKpWiHRwJmAumGGQytRQOKQQzMcXk385h0ozaS4NaMEgpj0BYsYJcZKXbeKO9L6oSIUsvv/YpyNu27JK3tT4EXi56SEctS67kunJ2kagzCUE63bvpeYICPKMMphXOykGhJCh6QPbUsFiUEH2fTTMT62Sg9HUtkSBk/VnxMZibUexaHtjIkZ6HlvIv7ltVMTXQQZE0lqQNDZoijl2Eg8iQ33mAJq+MgSQhWzt2I6IDY1Y8Mt2hD8+ZcXSaNS9k/LlZuzUvUyj6OADtEROkE+OkdVdI1qqI4oekBP6BW9OY/Os/PufM5al5x85gD9gvP1DUwHrXI=</latexit>

Describe this mess statistically ➜ parton distribution functions (PDFs)

PDFs:       

Probability to find parton of flavour  with momentum fraction , 

as function of “resolution scale”  ~ virtuality / inverse lifetime of fluctuation

fi(x, Q2
F) i ∈ [g, u, d, s, c, (b), (t), (γ), (ℓ)]

i x = pi/phadron
QF

๏Hadrons are composite, with time-
dependent structure

Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

u
d
g
u

p

fi(x, Q2) = number density of partons i
at momentum fraction x and probing scale Q2.

Linguistics (example):
F2(x, Q2) =

∑

i

e2i xfi(x, Q2)

structure function parton distributions

(illustration by T. Sjöstrand)

๏What are we really colliding?

•Take a look at the quantum level

Peter Skands (HCPSS 2020)

Can we calculate LHC processes now?



QCD and event generators Adil Jueid Konkuk University 17

๏Lifetime of typical fluctuation  (=time it takes light to cross a proton)


• ; Corresponds to a frequency of ~ 500 billion THz


๏To the LHC, that’s slow! (reaches “shutter speeds” thousands of times faster)


•Planck-Einstein:  million billion THz


๏  Protons look “frozen” at moment of collision


•But they have a lot more than just two “u” quarks and a “d” inside


๏Difficult/impossible to calculate, so use statistics to parametrise the structure: parton distribution functions (PDFs)

•Every so often I will pick a gluon, every so often a quark (antiquark)

•Measured at previous colliders (+ increasingly also at LHC)

•Expressed as functions of energy fractions, x, and resolution scale, Q2

•+ obey known scaling laws df / dQ2 : “DGLAP equations”.

≈ rp/c

≈ 10−23 seconds

E = hν ⟹ νLHC = 13 TeV/h = 3.14

⟹

Peter Skands (HCPSS 2020)

Why PDFs work 1: heuristic explanation
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“Deep’’ = invariant mass of final 
hadronic system ≫ Mproton

H
ad

ro
nic p

art : 
m

essy

Incoming relativistic 
electron (or positron)

Hard (i.e. high-energy) photon

 (spacelike)


 often use  instead
q2 = (k − k′￼)2 < 0

⟹ Q2 = − q2 > 0

Lep
to

nic p
art : 

clean

Peter Skands (HCPSS 2020)

Deep Inelastic Scattering (DIS)
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�`h =
X

i

X

f

Z
dxi

Z
d�f fi/h(xi, Q

2
F )

d�̂`i!f (xi,�f , Q2
F )

dxi d�f

→ The cross section can be written in factorised form :

�Q2

Lepton
Scattered


Lepton

Scattered

Quark

Deep Inelastic 
Scattering (DIS)


fi/h

�̂
xi

f

We assume* that an 
analogous factorisation 

works for pp


*caveats are beyond the scope 
of this course

Sum over initial ( ) 

and final ( ) parton 
flavors

i
f

 = Final-state 
phase space
Φf  = PDFs


Assumption: 
fi/h

Q2 = Q2
F

Differential partonic

Hard-scattering

Matrix Element(s) at Q2Peter Skands (HCPSS 2020)

Why PDFs work 2: factorisation in DIS
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Factorization

d⇤

dX
=

⇥

a,b

⇥

f

�

X̂f

fa(xa, Q
2
i )fb(xb, Q

2
i )

d⇤̂ab�f(xa, xb, f, Q2
i , Q

2
f)

dX̂f

D(X̂f � X, Q2
i , Q

2
f)

20

PDFs: needed to compute 
inclusive cross sections

FFs: needed to compute 
(semi-)exclusive cross sections

In MCs  initial-state radiation + 
non-perturbative hadron (beam-

remnant) structure

+ multi-parton interactions

→

Hard Process

Fixed-Order QFT

Matching 
& Merging

In MCs: resonance decays + 
final-state radiation + 

hadronisation + hadron decays 
(+ final-state interactions?)

PDFs: connect incoming hadrons with the high-scale process

Fragmentation Functions: connect high-scale process with final-state hadrons

Both combine non-perturbative input + all-orders (perturbative) bremsstrahlung resummations 

pQCD = perturbative QCD

Peter Skands (HCPSS 2020)

Factorisation  we can still calculate!⟹
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The QCD Lagrangian is no-linear in the fields ⟹ Physical observables can only be computed approximatively.

𝒪 = ∑
k

gk
s 𝒪k

k = 2 ⟹
Example

⟹ ℐ ≈ ∫
d4q

(2π)4

1
q4

≈ ∫
dq
q

= lim
q→+∞

log(q) Clearly divergent

Divergences (here called UV) mean that we cannot make predictions!

An ad-hoc solution is to cut-off the integral at some scale 

 our theory cannot say anything above 

Λc
⟹ Λc

⟹ ℐ ∝ log(Λc)

Prescription leads to gauge dependent quantities + add some arbitrariness 
to the theory predictions (dependence on an unknown parameter ) Λc

⟹ Define a better prescription; 
aka renormalisation

Beyond trees: Infinities
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In a nutshell

• Choose a set of independent parameters in the theory. In QCD, we have 
only one parameter  (if we ignore quark masses).


• Split the bar parameters (fields) into renormalised parameters (fields) and 
counter-terms.


• Find renormalisation conditions to fix the counter-terms.

• The final result should be free of UV infinities.

gs

We say that the fields and parameter are just bare at a given order 
 At the quantum level, the fields and parameters are defined as ⟹

p0
i → Zpi

pi and ℱi,0 → Z1/2
ℱ ℱi
+ suitable regularization scheme

NOTE: There are further divergences for momenta  (these are IR 
divergences and should be treated separately)

q → 0

Renormalization or infinities are not so scary
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Let’s  return to the Lagrangian of  interaction (at the one-loop order)qq̄g

ℒqqg = μ
4 − D

2 gsZ1q̄iγμTa
ijqjAa

μ = μ
4 − D

2 gs
Z1

Z2 Z3
q̄(0)

i γμTa
ijq

(0)
j Aa,(0)

μ = gs,0q̄(0)
i γμTa

ijq
(0)
j Aa,(0)

μ

Identical to the 
Lagrangian in slide (10) to preserve the natural dimension 

of  in D space-time dimensions.

 is called the renormalisation scale

ℒ
μ


q(0)
i → Z1qi

Aa,(0)
μ → Z3 Aa

μ

⟹ gs,0 =
Z1

Z2 Z3
μ

4 − D
2 gs

 is independent of 

 differentiating with respect to  gives

gs,0 μ
⟹ μ β(gs) = −

ϵ
2

gs +
ϵ
2

g2
s

∂
∂gs ( Z1

Z2 Z3 ) ϵ = 4 − D

Application: the strong coupling constant
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We need to truncate at the one-loop order; we define Zk
i = 1 + kδi + 𝒪(δ2

i )


δ1 =
1
ϵ ( gs

4π )
2

[−2CF − 2CA + 2(1 − ξ) +
1
2

(1 − ξ)CA]
δ2 =

1
ϵ ( gs

4π )
2

[ − 2CF + 2(1 − ξ)CF]
δ3 =

1
ϵ ( gs

4π )
2

[ 10
3

CA −
8
3

nfTF + (1 − ξ)CA]
⟹ β(gs) = −

ϵ
2

gs −
g3

s

16π2 [ 11
3

− CFnfTF] = −
g3

s

16π2
β0

β0 =
11
3

CA − CFnfTF  unless > 0 nf > 17

⟹  can be computed from explicit evaluation of one-loop integrals (see e.g. Peskin & Schroeder)δi

If we define the strong 
coupling constant as: 

αs =
g2

s

4π

⟹ μ
d

dμ
αs = −

α2
s

2π
β0 which can be solved to give αs(μ) =

2π
β0

1

log ( μ
ΛQCD )

Application: the strong coupling constant
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๏The strong coupling is the main parameter of perturbative QCD calculations. It controls:


The size of QCD cross sections (& QCD partial widths for decays).


The overall amount of QCD radiation (extra jets + recoil effects + jet substructure).


Sizeable QCD “K Factors” to essentially all processes at LHC, and ditto uncertainties.

Asymptotic freedom in the ultraviolet

Confinement (IR slavery?) in the infrared

The strong coupling constant



QCD and event generators Adil Jueid Konkuk University 26

๏Annotation by Peter Skands

Nobel prize citation (taken from G. Salam's talk)
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Truncate at  → Born Level = First Term

Lowest order at which X happens

k = 0,ℓ = 0

leg leg
loop

leg

Phase Space

Cross Section 
differentially in O

Matrix Elements

for X+k at (𝓁) loops

Sum over identical

amplitudes, then square

Evaluate observable 
→ differential in 𝒪

Momentum

configuration

d�

dO

����
ME

=
X

k=0

Z
d�X+k

�����
X

`=0

M (`)
X+k

�����

2

�
�
O �O({p}X+k)

�Fixed Order

(All Orders)

Sum over 
“anything” ≈ legs

•In “inclusive X production” (suppressing PDF factors)

X + anything
z }| {<latexit sha1_base64="re/sIailyU2kZeFLCpiyeHL1vd8=">AAACGXichVA9SwNBEJ3zM8avU0ubxSBYhbsoaBm0sYxgPiA5wt5mL1myt3vs7gnhiD/Dxr9iY6GIpVb+GzfJFZoIPhh4vDfDzLww4Uwbz/tylpZXVtfWCxvFza3tnV13b7+hZaoIrRPJpWqFWFPOBK0bZjhtJYriOOS0GQ6vJn7zjirNpLg1o4QGMe4LFjGCjZW6roc60vqhwoRm9/9hnI27bskre1OgReLnpAQ5al33o9OTJI2pMIRjrdu+l5ggw8owwum42Ek1TTAZ4j5tWypwTHWQTT8bo2Or9FAklS1h0FT9OZHhWOtRHNrOGJuBnvcm4l9eOzXRRZAxkaSGCjJbFKUcGYkmMaEeU5QYPrIEE8XsrYgMsE3J2DCLNgR//uVF0qiU/dNy5easVL3M4yjAIRzBCfhwDlW4hhrUgcADPMELvDqPzrPz5rzPWpecfOYAfsH5/AZjB6Ty</latexit>

๏Now want to compute the distribution of some observable: 𝒪

Cross sections at Fixed order
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P. Skands Introduction to QCD
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F + 2 @ LO
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Figure 12: Coefficients of the perturbative series covered by LO calculations. Left: F pro-
duction at lowest order. Right: F + 2 jets at LO, with the half-shaded box illustrating the
restriction to the region of phase space with exactly 2 resolved jets. The total power of ↵s for
each coefficient is n = k + `. (Photo of Max Born from nobelprize.org).

The essence of the point is that, if the regularization scale is taken too low, logarithmic
enhancements of the type

↵
n
s lnm2n

✓
Q

2

F

Q
2

k

◆
(45)

will generate progressively larger corrections, order by order, which will spoil any fixed-order
truncation of the perturbative series. Here, QF is the hard scale associated with the process
under consideration, while Qk is the scale associated with an additional parton, k.

A good rule of thumb is that if �k+1 ⇡ �k (at whatever order you are calculating), then the
perturbative series is converging too slowly for a fixed-order truncation of it to be reliable. For
fixed-order perturbation theory to be applicable, you must place your cuts on the hard process
such that �k+1 ⌧ �k. In the discussion of parton showers in Section 3.2, we shall see how the
region of applicability of perturbation theory can be extended.

The virtual amplitudes, for ` � 1, are divergent for any point in phase space. However,
as encapsulated by the famous KLN theorem [51, 52], unitarity (which essentially expresses
probability conservation) puts a powerful constraint on the IR divergences16, forcing them to
cancel exactly against those coming from the unresolved real emissions that we had to cut out
above, order by order, making the complete answer for fixed k + ` = n finite17 Nonetheless,
since this cancellation happens between contributions that formally live in different phase
spaces, a main aspect of loop-level higher-order calculations is how to arrange for this cancel-
lation in practice, either analytically or numerically, with many different methods currently on
the market. We shall discuss the idea behind subtraction approaches in section 2.4.

A convenient way of illustrating the terms of the perturbative series that a given matrix-
element-based calculation includes is given in figure 12. In the left-hand pane, the shaded
box corresponds to the lowest-order “Born-level” matrix element squared. This coefficient
is non-singular and hence can be integrated over all of phase space, which we illustrate by
letting the shaded area fill all of the relevant box. A different kind of leading-order calculation

16The loop integrals also exhibit UV divergences, but these are dealt with by renormalization.
17Formally, the KLN theorem states that the sum over degenerate quantum states is finite. In context of fixed-

order perturbation theory, this is exemplified by states with infinitely collinear and/or soft radiation being degen-
erate with the corresponding states with loop corrections.
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Born

(1882-1970)

Nobel Prize 1954

k = 0, ℓ = 0

Loops and Legs



QCD and event generators Adil Jueid Konkuk University 29

Note: (X+1)-jet observables will of course only be correct to LO

P. Skands Introduction to QCD

F @ NLO
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F+1 @ NLO
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Figure 13: Coefficients of the perturbative series covered by NLO calculations. Left: F produc-
tion at NLO. Right: F + 1 jet at NLO, with half-shaded boxes illustrating the restriction to the
region of phase space with exactly 1 resolved jet. The total power of ↵s for each coefficient is
n = k + `.

is illustrated in the right-hand pane of figure 12, where the shaded box corresponds to the
lowest-order matrix element squared for F + 2 jets. This coefficient diverges in the part of
phase space where one or both of the jets are unresolved (i.e., soft or collinear), and hence
integrations can only cover the hard part of phase space, which we reflect by only shading the
upper half of the relevant box.

Figure 13 illustrates the inclusion of NLO virtual corrections. To prevent confusion, first a
point on notation: by �

(1)

0
, we intend

�
(1)

0
=

Z
d�0 2Re[M(1)

0
M

(0)⇤
0

] , (46)

which is of order ↵s relative to the Born level. Compare, e.g., with the expansion of equa-
tion (44) to order k + ` = 1. In particular, �

(1)

0
should not be confused with the integral over

the 1-loop matrix element squared (which would be of relative order ↵
2
s and hence forms part

of the NNLO coefficient �
(2)

0
). Returning to figure 13, the unitary cancellations between real

and virtual singularities imply that we can now extend the integration of the real correction in
the left-hand pane over all of phase space, while retaining a finite total cross section,

�
NLO

0 =

Z
d�0 |M

(0)

0
|
2 +

Z
d�1 |M

(0)

1
|
2 +

Z
d�0 2Re[M(1)

0
M

(0)⇤
0

]

= �
(0)

0
+ �

(0)

1
+ �

(1)

0
,

(47)

with �
(0)

0
the finite Born-level cross section, and the positive divergence caused by integrating

the second term over all of phase space is canceled by a negative one coming from the inte-
gration over loop momenta in the third term. One method for arranging the cancellation of
singularities — subtraction — is discussed in section 2.4.

However, if our starting point for the NLO calculation is a process which already has a
non-zero number of hard jets, we must continue to impose that at least that number of jets
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X @ NLO

(includes X+1 @ LO)

Loops and Legs
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�NLO(e
+e� ! qq̄) = �LO(e

+e� ! qq̄)

✓
1 +

↵s(ECM)

⇡
+O(↵2

s)

◆
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LO, NLO, etc
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(note: not the 1-loop diagram squared)
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Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

X(2) X+1(2) …

X(1) X+1(1) …

Born X+1(0) X+2(0)

IR singularities

(from poles of propagators going on shell)

*for so-called IRC safe 
observables; more later

Cross sections at NLO: a closer look
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QCD lecture 4 (p. 29)

Jets

Cones
Consequences of collinear unsafety

jet 2
jet 1jet 1jet 1 jet 1

αs x (+ )∞nαs x (− )∞n αs x (+ )∞nαs x (− )∞n

Collinear Safe Collinear Unsafe

Infinities cancel Infinities do not cancel

Invalidates perturbation theory

Invalidates perturbation theory(KLN: ‘degenerate states’)

Virtual and Real go into different bins!Virtual and Real go into same bins!

Not all observables can be computed perturbatively:

(example by G. Salam)Note on Observables
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SOFT radiation: 

Adding any number of infinitely soft particles (zero-energy) 


should not change the value of the observable

COLLINEAR radiation:

Splitting an existing particle up into two comoving ones 

(conserving the total momentum and energy) 

should not change the value of the observable

Perturbatively Calculable ⟺ “Infrared and Collinear Safe”
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LO, NLO, etc
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1-Loop × 1-Loop

Z � 2 2-loop:
qk

qi

qj

gij
a

qk

gjk
b

qj

qi

qk

qk

17

Z � 2 1-loop squared:

qk

qi

qk

gik
a

qi

qk

qi

qk

gik
a

qi

18

Z � 2 1-loop squared:

qj

qi

qk

gik
c

qi
gjk

agij
b

qj

qk

qk

gjk
a

18

Z � 4:
qj

qi

qk

gik
a

qi
gij

b

qj

qi

qk

gik
a

qi
gij

b

19

X(2) X+1(2) …

X(1) X+1(1) …

Born X+1(0) X+2(0)

Two-Loop × Born Interference

1-Loop × Real for (X+1)

Real × Real for (X+2)

Everything we 
had at NLO

Structure of NNLO calculation


