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Outline: Introduction to Hadron Collider Physics
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The Universe is a Laboratory for Understanding Fundamental Physics

Ka band 41GHz

Pictures of the early Universe




But Laboratory Measurements Can Also Teach Us About the Universe

Neutrino interaction from
SuperKamioKande
(from sun)

Matter-antimatter
asymmetry from
Babar
(accelerator based)




Description of early universe requires knowledge of particles that

existed and interactions between them
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LHC can play an especially critical role

the LHC, CERN

® Highest Achievable Energy

» Reproduce conditions of the early Universe
® TeV energy scale

» Where fundamental particles obtain their mass
® Many theoretical possibilities

» But need data to distinguish between them
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The Large Hadron Collider (LHC)

SUISSE = =—= e =
FRANCE 2 3 : CERN '
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13 TeV now, 14 TeV in future, £ > 103* cm™2s—



What might we find at the LHC?

Answers to very fundamental questions:
® What is Dark Matter?

» Supersymmetric particles? 74% Dark Energy
» Other weakly interacting
particles?
® Why is gravity so weak?
» Supersymmetry?

» Extra spatial dimensions? 4% Atoms
® Why do particles have mass?
> A single Higgs boson?

» A more complicated EWSB
sector?




Strategies for exploring new physics with hadron colliders

® Direct searches for new particles and new interactions through
» Bumps in invariant mass spectra
P Excesses in rate for processes with missing mometum
» Unexpected production of long lived particles
® Searches for decays predicted to be forbidden or highly
suppressed
» Lepton flavor violation
» Flavor changing neutral currents
® Precision measurements of fundamental properties sensitive to
new particles through loop corrections
> W mass
» Higgs couplings
» Anomolous couplings in 3 and 4 boson final states
All these strategies depend on our ability to model SM
processes accurately and precisely
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Begin with the largest cross sections: Soft Physics

Bulk of inelastic cross section: Large impact parameters, soft
collisions

® |ow momentum transfer = cannot use perturbative QCD
Rely on phenomenological models fit to data
» Fireballs
» Strings
» Multiple parton interactions
Qualitative features:
» Limited pr wrt beamline
» Longitudinal momentum distribution dominated by phase space
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Soft Physics: Lorentz invariant phase space

d3 dp?. d
N L]
dE 2 FE
di 1 do
B3p o7 dp dy
E+ Dy
where y = 1n< ) — “rapidity”
2 E—p|
dp
dy = —
Y E

: 0 .
massless particles: y ~ —In tan§ =1n < pseudo — rapidity

Natural variables to describe particle production are: pr, n, ¢
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Particle Production in randomly triggered events
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® Small rise in dN/dn with /s
® dN/dpT falls exponentially for low /s
® As ./s increase, high tail develops

Onset of hard scattering!
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The physics of hard collisions
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® Protons are made of partons

» Energy in hard scatter depends on x; and zo: the fraction of
the proton's momentum carried by the initial state partons

® Like Rutherford, identify high momentum transfer scatters by
looking at large angles

» Large transverse momentum (pr)
® Highest energy collisions are rare
» Requires high intensity beams (large luminosity)
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Factorizing the calculation

do(a+b — ct+d) =Y FOCDF® (0,)de (i+) — c+d+X")Dejo(2e)Dayp(2a)
ij
¢ calculated using Feynman diagrams (QFT)
Initial and final state interactions described using
» F(z): the parton distributions
» D(z): the fragmentation functions

measured in reference processes;

Both exhibit scaling violations: F(z, ), D(z, i)

Note: example here is 2 — 2 scattering; 2 -+ 1and 2 > N
also possible
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The topology of hard scattering events

Two “beam jets” plus high pr objects

® Beam Jets: “Underlying Event”
» Limited pr wrt beamline
» Looks alot like soft events
» Presence of hard scatter — larger pp
overlap, so mean pp and multiplicity somewhat higher
® Hard Scattering
» $ =z, where x's are the fraction of the hadron momenta
carried by the iteracting partons
» pr in general is well measured
» p, can be large. Often not well
measured directly (losses down the beampipe) but can use
angle and pr
» Cross sections for hard scattering can be calculated using
perturbative QCD
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Beam Jets and Underlying Event

* Hard Collision leaves remnants of incoming p's moving

in Beam Direction /
L —— —
e
w

* “Initial State” gluon radiation largely co-linear with
incoming partons: same basic structure

“Hard" Scattering

Praton

Undexlying Event

Soft particles distributed
uniformly inm g P

% FalGiake
> Radistion
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Predicted Cross Sections at Hadron Colliders

o (nb)

proton - (anti)proton cross sections
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® Rates determined by

» Hard Scattering Cross Section

» Parton luminosity
® QCD processes dominate
» EW rates lower by a/ag

® For given s, cross sections
decrease rapidity with §
» Heavy particles difficult to
produce

17/33



How well do these calculations do?

Standard Model Total Production Cross Section Measurements Status:
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Practical Details

atbe
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® Something happens every beam 2 LHC  Ws=t1eTed L=10%'em™s”
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® Must select events of interest:

=
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Trigger =
> Must know what you throw out

o

P> Analysis must be trigger-aware

=]

a

® Jets dominate hard scattering rate

a

» Can isolate EW processes only
if they have something besides [
jets, eg leptons

P> Jets are a potential source of
background to leptons “fakes” v
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can induce false signals
® W, Z: Background for Top, Higgs,
SUSY
® Top: Background for many SUSY

nd exoti ignal
and exotica signals 19/33



Analysis Strategy: Begin with the largest cross section and work down

® Characterize bulk of cross section “soft physics”
> Tracks

® |dentify dominant 2 — 2 QCD processes
> Jets

® Develop strategies for selecting EW processes
> e v,y

® Reconstruct heavy objects produced strongly
> Top

® Understand discovery potential for low rate EW processes
» Dibosons

> Higgs

® Develop strategies to look for new physics (BSM)
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Track distributions from underlying eve

leading jet

transverse

60° < |AG] < 120°

® ook away from the hard scattering
products (jets or leptons)
> Eg, 90° from jets in a dijet
event

® Particle multiplicity almost
independent of jet pp

® Remnants of the inital hadrons
moving down beamline with limited
pr with respect to beam direction
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QCD Jets

proton / ‘ jet

antiproton \ ‘jet

® Need an algorithm to decide how many jets we have and to associate
particles with the jets
» Algorithm will have some parameter to handle the infrared divergence (eg
a cut-off)
® Two basic types of algorithm:
» Geometric cluster algorithms:
® (Cluster based on angular separation. Define in terms of a cone-size
(eg the ¢ of Sterman-Weinberg)
» Recombination cluster algorithm
® Find particles close together in a momentum-based metric and

replace them with the sum of their four-momenta
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What is important in a jet-finding algorithm?

® Should combine particles (or energy clusters) into jets in a way that
agrees with what we see “by eye” in straightforward cases

> Avoid pathologies (turns out this isn't easy)
® Should be insenstive to details of the hadronization
> If a particle decays, calculation using parent and daughters should
give nearly the same answer

® Should be possible to apply same algorithm to the quarks and
gluons that are the outgoing “particles” in a QCD calculation
(before hadronization)
» Should not have divergences for colinear or soft emission: “Colinear
and Infra-red safe”
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The Basics of Recombination Cluster Algorithms

® Can start with any objects where we can define a 4-momentum, eg
> Particles
» Energy clusters
Label themi=1...n
® | oop over all these objects, calculating the distance between them
according to a metric
® Combine the two that are closest together in that metric, if the distance
is below a fixed cut

® |terate until all pairs satisfy yij > yeut

® Two common metrics:
> kTZ
M2 = mi 2 2y Rij
+; = min (Ei,Ej) D
> anti-kp:
D

Dij = min (E;Q, Ejf?)

where R;; is essentially 0;; and D is a parameter of the algorithm
indicating how big we allow jets to be
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First Evidence for Jets in Hadron Colliders (UA2, 1982)

R e o o o o o o o N
o ‘”‘:‘9"’2‘”‘ | L o ]
30° < 9 <330° - Pong R
02| (uncorrected data) ] [ ."- h, i
% 505— - - |
;s - -
§ | | g e
r '\ et b
g 100 - B - 7
s . | o |
8 +
107 *+ 1 [ h
0ttt L ittt b L
_*_ 0 50 100 150
1072 + ] ZEL(GeV)
s
-+ Fie ¢ Th o of the v snergy o i e Highs 1, 0 v
- L e (o3 oo et vt
T s w0 w0 20 20 e UA? cpermnt et i
TE (Gev)
oo
Figure 3 The observed distribution of do/dEE, as a function of £, as measured by the L
pp interactions at 546 GeV (SppS collider at CERN) .
. W - — i
High tz.nl in > FE7 indicates onset of hard -
scattering L
® Use simple nearest-neighbor clustering algorithm -
- |
® Majority of transverse energy in two clusters, -
back-to-back in ¢ o

® Dijet system boosted in z: two intial partons
carry different fractions of inital hadron energies

Fiares
i evets with (5F, 60 GeV), 42 messred by the UAZ expriment.

25/33



he non-abelian nature of the gluon

100 T T T

® Elastic parton-parton scattering AT

® ¢{-channel exchange of a gluon ey tom b e
O 900 GeV 1982 MB Trigger

® All 3 processes have similar Feynman 1o — g"::mm:g: -:g:f;::z i
— = Ll ns -

diagrams
» Different quark and gluon n
color charge
» Different quark and gluon PDFs
» Define an “single effective
subprocess” PDF

F (x)

Fl@) = G@)+; Q) + Q)

. . 0.001 . : :
® Clear evidence for gluon scattering ) 02 04 05 06
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Dijet Angular Distribution

® t-channel pole leads to angular

distribtion
do 2. 1
=ais
dcos 0* 1 — cos2 0*

® Rutherford-like shape with divergence
in beam direction

® Change variables

1+ cos 6*

X= 1 — cos 6%

Distribution is approximately
constant for x > 2

60 T 1 T T T T T
Leading order
200 QCD scaling
z curve
s
i
100
Leading order QCD
including non-scaling effects
0 L 1 | 1 | ; !

TP01588
Figure 9 The distribution of 7 for two-jet events as measured by the UAI collaboration.
The curve shows the predictions of & lowestorder two-parton saatiering QCD cakculation,
with and without contributions due to QCD scaling violations.
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What do jets look like at the LHC?
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State of the Art: Theory and Experiment

® Hard scattering cross section at NLO or multileg (your choice)

» Estimate uncertainties by evaluating dependence of calculation on choice
of scale

® Well measured PDFs
® Jet finding algorithms that are infra-red and colinear safe

® Evaluation of non-perturbative effects through the use of Monte Carlo
generators

» Independent generators and generator tunes to assess systematic

uncertainties
® Careful in-situ calibration of jet energy

® Corrections for pileup (multiple collisions in one beam crossing)

29/33



Can the theorists predict the cross section?
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How about 3 jets?
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Using dijet angular distribution to look for new physics
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What we have learned so far

® High energy and luminosity available at hadron colliders make the an
essential tool to search for new physics

® Such searches only possible if Standard Model physics well modelled using
precise and accurate calculations

® (Calculations factorize into

» Initial parton luminosities determined from parton distribution function
measured in reference processes (eg ep)
» Hard scattering cross section calculated using perturative QCD

» For quarks and gluons: Fragmentation functions again measured in
reference processes
® Quarks and gluons cloth themselves as jets of hadrons
» Jet finding algorithms necessary both for particles and partons
® With model calculational techniques both experimental and theoretical,
agreement between predictions and measurements is excellent
® Tomorrow:
> Extend the picture to electroweak bosons (W and Z), top and Higgs

P> Look forward towards the next frontiers in measurement and calculations
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