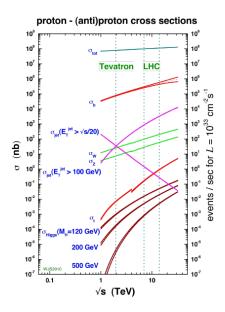
Introduction to Hadron Collider Physics (II)

April 4, 2021

Outline: Introduction to Hadron Collider Physics

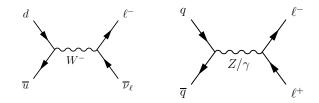

Yesterday

- Introduction and overview
- Cross section calculations: The basics
- Soft Physics: Min bias and underlying event
- Jet Physics
- What we have learned so far

Today

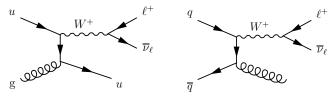
- W and Z production
- Top physics
- The Higgs
- Conclusions

Reminder: Cross Sections at Hadron Colliders



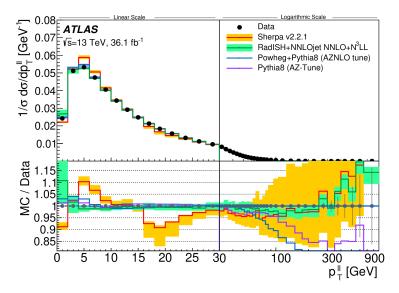
- Rates determined by
 - Hard Scattering Cross Section
 - Parton luminosity
- QCD processes dominate
 - EW rates lower by α/α_S
- Main background for W and Z production: QCD jets
- Cannot see single $W \to q\overline{q}'$ or $Z \to q\overline{q}$ above jet background
 - Almost all studies of W and Z in hadron colliders in leptonic decay modes

$$\begin{array}{cccc} W^{\pm} & \to & \ell^{-}\nu_{\ell} \\ \ell^{+}\overline{\nu}_{\ell} \\ Z & \to & \ell^{+}\ell^{-} \end{array}$$


Production of W and Z Bosons

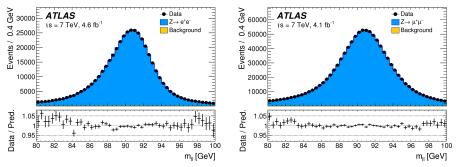
• Lowest order diagram: quark annihilation

At lowest order (pure electroweak), W and Z are produced with no p_T


• Adding diagrams of order α_S : Annihilation and Compton Scattering:

These give the W and $Z p_T$

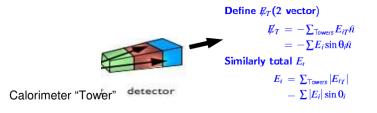
 In addition to these one gluon diagrams, must include emission of multiple soft gluons: Can be handled using resummation techniques


Full QCD Calculation: Boson p_T Remains Small

Distribution dominated by multiple soft gluon emission

Reconstruction of Z Bosons

- In general, limited to leptonic modes
- Large QCD jet background swamps signal in jet channel
- In principle, can find regions of phase space where hadronic mode can be reconstructed, but in very specialized analyses with other objects
- Two high p_T leptons, nearly back-to-back
- Reconstruction straightforward, background small

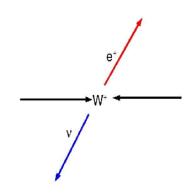

Reconstruction of W Bosons

- Again, restricted to lepton channels
- But here, one of the nearly back-to-back leptons is a neutrino How do we "detect" a particle that doesn't interact in our detetor?
- Look for momentum imbalance and assign the missing momentum to the ν

But in hadron colliders, limited to using only the 2 transverse components of the momentum

Neutrino Reconstruction

- Must add the momentum of all objects in the event
- The traditional way: calorimeter only



- Create a grid of calorimeter towers
- Treat each tower as a massless particle with momentum direction normal to the tower
- · For better resolution: Use reconstructed objects
 - "Particle-flow": Use tracking information to improve calorimeter resolution (pioneered by CMS)

- Combine the momentum of all the jets and electrons, muons
- Then add the remaining unused energy using towers as above
- When combining, can have different calibrations to each object

OR:

W Decay: Lepton p_T Distribution

 In CM frame, e and ν are back-to-back and balance p_T:

$$p_T{}^2 = \frac{1}{4}\hat{s}\sin^2\theta$$

• Changing variables from $\cos \theta$ to p_T introduces a Jacobean:

$$\frac{d\cos\theta}{dp_T^2} = -\frac{2}{\hat{s}\cos\theta}$$

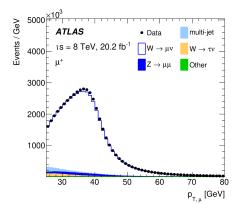
But we know

$$\frac{d\sigma}{d\cos\theta} \propto (1 + q\lambda\cos\theta)^2$$

where q is the charge and λ is helicity wrt beamline

so

$$\frac{d\sigma}{dp_T^2} \propto \frac{(1+\cos^2\theta)}{\hat{s}\cos\theta} \propto \frac{2\left(1-2p_T^2/\hat{s}\right)}{\hat{s}\left(1-4p_T^2/\hat{s}\right)^{\frac{1}{2}}}$$


The Jacobean Peak

Notice

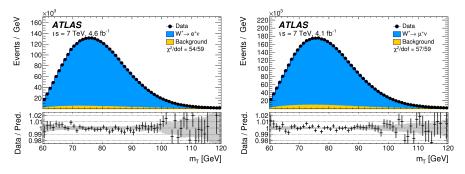
$$\frac{d\sigma}{dp_T} \propto \frac{1 + \cos^2\theta}{\cos\theta}$$

Diverges for $\theta=\pi/2$ (which is $p_T=\sqrt{\hat{s}}/2)$

- Diverence results from the Jacobean factor in tranformation to p_T
- Integration over Breit-Wigner removes singularity but leaves the peak
- HO corrections give \boldsymbol{W} transverse momentum and further smear the peak

Transverse Mass

- $W \ p_T$ gives ℓ and ν by same boost
- Define ℓ - ν transverse mass:

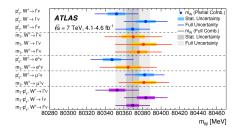

$$m_T^2 = (E_T^\ell + E_T^\nu)^2 - (\vec{p}_T^\ell + \vec{p}_T^\nu)^2$$

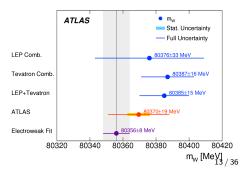
- Note that for $p_T^W=0,\,m_T=2|p_T^\ell|=2|p_T^\nu|$
- Thus

$$\frac{d\sigma}{dm_T^2} = 4 \frac{d\sigma}{dp_T^2}$$

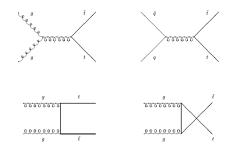
- m_T sensitive to transverse boosts only at second order
 - Predicted m_T distributuion not very sensitive to modeling of boson p_T
- But m_T more sensitive to detector resolution since depends on measurement of the ν

Transverse Mass for W Bosons

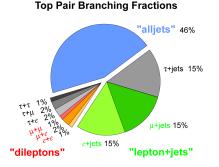


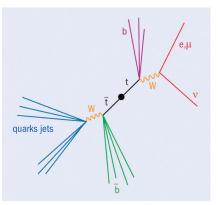

- Background small in both e and μ channels
- Small theoretical uncertainties: a better choice of variable than lepton p_T in most cases

W-mass Measurement


- Precision measurement that depends on detailed control of systematic uncertainties
- Select well-measured subset of events: No jet activity
- Separate fits in e and μ and for + and - leptons
- Compare fits of different kinematic varibles

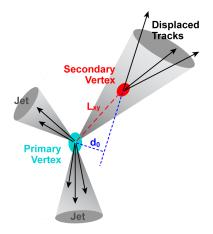
We'll come back to importance of this measurement later today

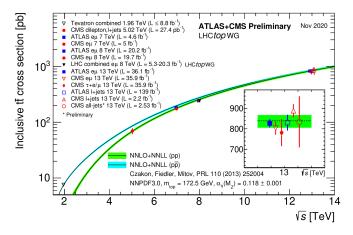

Top-Pair Production



- Strong production: $t\bar{t}$ pairs
- Tevatron: (pp̄ collder)
 - Production rate suppressed: $2m_{top} \sim 0.2\sqrt{s}$
 - ▶ 15% gg, 85% qq̄
- LHC: (pp collider)
 - Production rate larger $2m_{top} \sim 0.05\sqrt{s}$
 - ▶ 90% gg, 10% qq̄

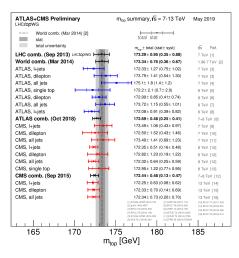
Top Decay Signatures ($t\bar{t}$ Production)

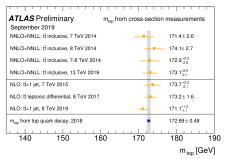

- $t \rightarrow Wb \text{ BR} \sim 100\%$ in SM (V_{tb})
- Top lifetime $\sim 5 \times 10^{-25}$ sec Decays before hadronization
- Top Pair production gives:



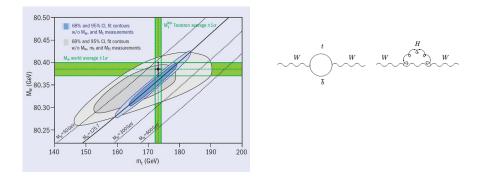
Jets Produced from *b*-quarks

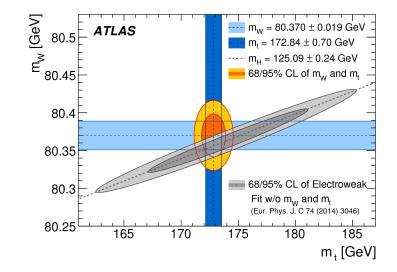
- Characteristics of *B* decays':
 - \blacktriangleright *B* lifetime long
 - Semileptonic BR 10% per species
- Two methods of b-tagging
 - Displaced vertex tag
 - "Soft" leptons inside jets
- Today, multivariant techniques combine all information into a single metric




Top Pair Cross Section

- Good agreement with pQCD predictions
- Important since top a major background to BSM searches


Top Mass Measurement Summary


- Good agreement between experiments for direct measurement of m_{top}
- *m_{top}* derived from cross section consistent with direct measurements

Why do m_{top} and m_W matter?

- m_W depends quadratically on m_{top} and logrithmically on m_{Higgs}
- Would also be sensitive to other BSM particles with moderate mass
- · Before Higgs discovered, gave prediction for its mass
- Now, can constrain possible BSM physics

m_W vs m_{top} Are things consistent with Electroweak fits?

No signs of disagreement to date

EWSB and the Higgs Boson

- Without Higgs, Lagrangian does not contain mass terms for the gauge bosons or the fermions
- If we introduce a mass term "by hand" for the gauge fields, it violates gauge invariance

 \rightarrow That's why the photon is massless in QED

• For the fermions, a mass term would have the form

$$-m_\ell \left(\overline{e}_R e_L + \overline{e}_L e_R\right)$$

But e_L is an isodoublet and e_R is an isosinglet: this term violates weak isospin symmetry

- The trick around this: Dynamic symmetry breaking
 - ► Maintain gauge invariance of *L*
 - Introduce a new field that has self interactions
 - These interactions induce a non-zero vacuum expectation value of one component of the field
 - Change of coordinate system to reinterpret this field in terms of physical states

Choose a Scalar Field

• Introduce a complex $SU(2)_L$ doublet

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} \quad Y_\phi = +1$$

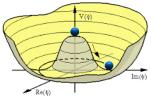
• With the following Lagrangian

$$\begin{array}{lll} \mathcal{L}_{scalar} & = & \mathcal{D}^{\mu}\phi\mathcal{D}_{\mu}\phi - V(\phi^{\dagger}\phi) \\ \\ \mathcal{D}_{\mu} & \equiv & \partial_{\mu} + \frac{ig'}{2}A_{\mu}Y + \frac{ig}{2}\vec{\tau}\cdot\vec{B}_{\mu} \\ \\ V(\phi^{\dagger}\phi) & = & \mu^{2}(\phi^{\dagger}\phi) + |\lambda|(\phi^{\dagger}\phi)^{2} \end{array}$$

· Introduce interactions between scalar field and the fermions

$$\mathcal{L}_{yukawa} = -\frac{g_f}{\sqrt{2}} \left(\overline{L} \phi R + \overline{R} \phi L \right)$$

couples fermion states of opposite helicity (as mass term in QED did) Each fermion has own g_f : m_f remain free parameters!


- Coupling of gauge bosons to the Higgs specified by \mathcal{D}_{μ} Gauge boson masses predicted

the VeV

$$V(\phi^{\dagger}\phi) = \mu^{2}(\phi^{\dagger}\phi) + |\lambda|(\phi^{\dagger}\phi)^{2}$$

• Now, suppose μ^2 is negative

Form of potential in complex space:

- Minimum not at $<\phi>=0$
- Define minimum as "vacuum expectation value" (VeV) v:

$$v = \frac{|\mu|}{\sqrt{\lambda}}$$

Chosing a direction for the VeV

- $V(\phi^{\dagger}\phi)$ has a degenerate ground state
- Pick vaccum to make $<\phi>_0$ real

$$<\phi>_0=\left(\begin{array}{c}0\\v/\sqrt{2}\end{array}\right); \ v=\sqrt{-\mu^2/|\lambda|}$$

- Spontaneous symmetry breaking in choice of ground state similar to how ferromagnet spontaneously chooses direction of *B* field
- Our choice conserves charge but breaks $SU(2)_L \times U(1)$ symmetry
- · Examine small excitations about the ground state

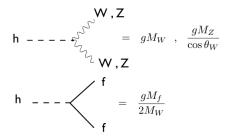
$$\phi(x) = \phi_0 + h(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + \eta(x) \end{pmatrix}$$

• Substituting into \mathcal{L}_{scalar} :

$$\mathcal{L}_{scalar} = \mathcal{D}^{\mu}\phi \mathcal{D}_{\mu}\phi - V(\phi^{\dagger}\phi)$$

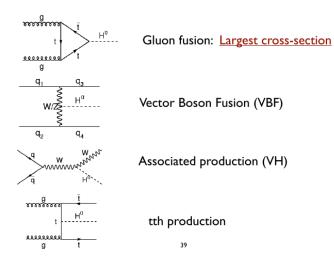
= $\frac{1}{2}(\partial_{\mu}\eta)^{2} - \lambda v^{2}\eta^{2} - \lambda v\eta^{3} - \frac{1}{4}\lambda\eta^{4} + const$

• 1^{st} term is kineteic energy term, 2^{nd} looks like mass term, others look like self interactions Interpret field η as particle (the Higgs) with mass $m_{\eta} = \sqrt{2\lambda v}$

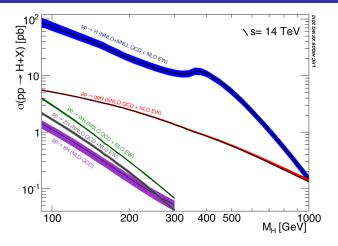

Some Observations

- Single fundamental Higgs is only simplest possible theory
- Important aspect is *dynamic* symmetry breaking where vacuum state breaks the symmetry rather than the Lagrangian
- SM predicted W and Z mass using values of G_F and $\sin \theta_W$ measured in β -decay and ν -scattering respectively
 - Predicted before W and Z decays observed experimentally
 - Gave motivation to build accelerators able to reach these energies
- Higgs mass not predicted by SM
 - $\blacktriangleright \quad m_{\eta} = \sqrt{2\lambda v^2}$
 - $\blacktriangleright We know v but not \lambda$
- Fermion masses "explained" but masses themselves are just parameters of the theory

$$\mathcal{L}_{Yukawa} = -\frac{g_f}{\sqrt{2}} \left(\overline{L} \phi R + \overline{R} \phi L \right)$$

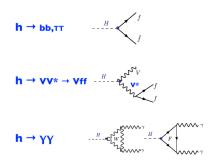

with unknown g_f

Couplings of the Higgs Completely Specified in SM

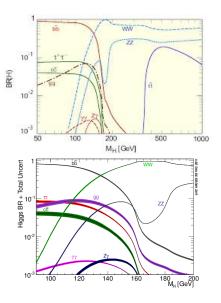


• But Higgs mass is an unknown parameter (since λ not determined)

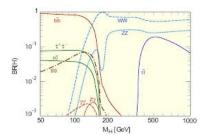
Higgs Production at the LHC



Cross Sections Calculated to NNLO



- Gluon fusion dominates
- Importance of VBF increases with m_H
- Associated production falls rapidly with m_H
- $t\bar{t}H$ always small


Higgs Branching Fractions

- Higgs likes to decay to the heaviest available states
- Once diboson channels open, they dominate
- Low mass: $h \rightarrow b\overline{b}$ largest mode
- $h \rightarrow VV^*$ significant for $m_h > 120 \text{ GeV}$

Search Strategy (I)

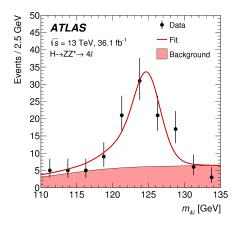
- Before Higgs discovered, mass could be anywhere below $\sim 1~{
 m TeV}$
- Indirect measurements favored light Higgs ($m_h < \sim 240 \text{ GeV}$)
- · Broad search strategy for all masses, production and decay modes
- If $m_h > 2M_Z$, $h \to ZZ$ is the golden mode
- For $m_h < 2M_Z$ look in multiple modes
 - Largest BR $(h
 ightarrow b ar{b})$ has huge background from QCD HF production
 - $h \to ZZ^*$ with leptonic decays clean but low rate ($BR(Z \to \ell \ell) \sim 3\%$ per species)
 - $h \to \gamma \gamma$ has good mass resolution but large continuum background
 - $h \rightarrow \tau \tau$ requires good τ identification

Search Strategy (II)

- Independent search in each decay mode
- For given mode, categorize events into categories with different S:B
 - These categories will also tell us about production mechanism
 - Important for measuring coupling
- Measure rate relative to SM prediction

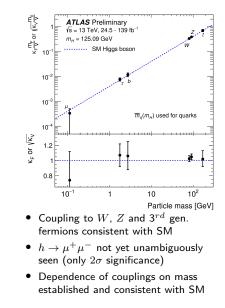
$$\mu \equiv \frac{\sigma \times BR}{(\sigma \times BR)_{SM}}$$

- Initial discovery presented as p-value plot vs m_h
- Construct likelihood function from Poisson probabilities


$$L(data|\mu, \theta) = \prod_{i} L(data_{i}|\mu, \theta_{i})$$

where i are the categories and θ are "nuisance parameters" representing systematic uncertainties

$h\to\gamma\gamma$


- Narrow peak over large continuum background
- Determine background from fit to data itself
- Depends critically on mass resolution
- Likelihood performed summing over different event categories

- Clean signature with narrow peak
- SM background largely from ${\cal ZZ}$
- Low statistics due to small BR but very clean
- Important mode for constraining Higgs spin and parity

Constraining Higgs couplings

What's next for Higgs Measurements?

- Tighten constraints on Higgs-boson and Higgs-fermion couplings
- Look for possible admixture of CP-odd state with the Higgs
- Higgs width measurements to constrain decays to unseen states
- Rare decays to look for new particles in loops
- Can we see the Higgs self coupling (di-Higgs production)?

The future of the LHC

- Current Run 2 data set: 140 fb⁻¹
- Run 3: 2022-2024 ∼ 200 fb⁻¹
- High luminosity LHC: 2027-2040, 14 TeV $\sim 3000 4000$ fb $^{-1}$
- Large future data sets and improved detector will allow
 - Increased reach in direct searches for new BSM particles and interactions
 - Strong constraints or evidence of new physics via loop diagrams through precision measurements
 - Insightful probes of new physics using the Higgs boson as a tool, including probes of the Higgs self coupling

Exciting times ahead!