Higgs couplings and properties at CMS and ATLAS

corrinne mills

University of Illinois at Chicago and Fermilab

On behalf of the ATLAS and CMS collaborations

Rencontres de Blois

October 2021

The Standard Model Higgs Boson

Very specific set of predictions for the Higgs boson in the SM

✓ Spin-zero scalar

🚾 🌫 Fermilab

RSITY OF

- Sole particle responsible for electroweak symmetry breaking (masses of W and Z bosons)
- ✓ Gives mass to all massive elementary particles, including fermions
- Interactions completely determined by 1) the mass of the Higgs boson,
 2) the mass of the other particle, and 3) the vacuum expectation value *v*
- ✓ Only thing undetermined is the Higgs boson mass m_H

Predictions of the SM frame our work, even as we search avidly for deviations

The Large Hadron Collider, CERN **The Alps** Genève Lac Leman airplanes go here ATLAS CMS (that way) CERN LHC collides protons at sqrt(s) = 13 TeV

The Large Hadron Collider, CERN

SM Higgs Boson production

Mediated via heavy particles

Distinctive final-state features allow "tagging" of events for categorization

Cross sections for m_H =125 GeV:

	process	13 TeV
ggF	gluon-gluon fusion	49 pb
VBF	vector-boson fusion	3.8 pb
VH	associated production	2.3 pb
ttH	associated production	0.51 pb

... and decay

Branching ratio = Probability for Higgs boson to decay to given final state

Run 2: H boson studies mature

 Simplified template cross sections reduce theory uncertainties by normalizing to specified fiducial region

👓 🛟 Fermilab

IVERSITY OF INOIS • Mass measurement converging

Phys. Lett. B 805 (2020) 135425

Run 2: H boson studies mature

- Best individual results approaching 10% precision
 - → Becoming systematics limited
- Simplified Template Cross Section interpretations as well
 - → Details in <u>ATLAS-CONF-</u> <u>2020-053</u>
- 6.3σ observation of Wh production (5.2σ expected)

ATLAS Preliminary Total Stat. Syst. SM $(s = 13 \text{ TeV}, 24.5 - 139 \text{ fb}^{-1})$ $m_H = 125.09 \text{ GeV}, y_H < 2.5$ $p_{SM} = 87\%$ Total Stat. SM SM ggF $\gamma\gamma$ 1.03 ± 0.11(±0.08, ±0.08) 0.004 ±0.010(±0.10, ±0.04) ggF ggF ZZ 0.94 ± $^{0.11}_{-0.110}$ (±0.10, ±0.04) 1.08 ± $^{0.19}_{-0.18}$ (±0.11, ±0.15) ggF ggF comb. 1.00 ± 0.07(±0.05, ±0.05) VBF $\gamma\gamma$ 1.31 ± $^{0.28}_{-0.28}$ (±0.01, ±0.04) +0.49 VBF ZZ 1.25 ± 0.60(±0.448, ±0.12) ±0.60(±0.448, ±0.12) ±0.60(±0.448, ±0.12) VBF WW 0.600 ± 0.36(±0.229, ±0.21) VBF ± 0.221 ±0.241 ± 0.403 VBF comb. 1.15 ± 0.57(±0.422, ±0.40) ±0.241 ± 0.403 ±0.241 ± 0.403 VBF comb. 1.15 ± 0.513 ± 0.110 VH $\gamma\gamma$ ±0.22 ± 0.024 ±0.241 ± 0.403 VH $\gamma\gamma$ 1.32 ± 0.331 ± 0.111 ± 0.120 ±0.11 ± 0.120 ±0.11 ± 0.120 ±0.11 ± 0.120 VH $\gamma\gamma$ 1.32 ± 0.331 ± 0.111 ± 0.120 ±0.11 ± 0.120 ±0.121 ± 0.111 ± 0.120 ±0.121 ± 0.121 </th <th></th> <th></th> <th></th> <th></th>				
$\overline{s} = 13 \text{ TeV}, 24.5 - 139 \text{ fb}^{-1}$ For the order of the end of th	ATLAS Preliminary	Stat	<u> </u>	Svst. SM
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sqrt{s} = 13 \text{ TeV}, 24.5 - 139 \text{ fb}^{-1}$	Olul.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$m_H = 125.09 \text{ GeV}, y_H < 2.5$ p = 87%		Tatal	Chat Quat
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SM -		Total	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.03	± 0.11 (± 0.08 , -0.07)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.94	-0.10	± 0.10 , ± 0.04)
ggF $\tau\tau$ 1.02 $+0.33$ $+0.43$ ggF comb. 1.00 ± 0.07 (± 0.05 , ± 0.05) VBF $\gamma\gamma$ 1.31 ± 0.28 (± 0.19 , ± 0.18) VBF ZZ 1.25 ± 0.50 (± 0.44 , ± 0.12) VBF WW 0.60 ± 0.38 (± 0.29 , ± 0.21) VBF trt 1.15 ± 0.53 (± 0.44 , ± 0.12) VBF comb. 0.60 ± 0.38 (± 0.29 , ± 0.21) VBF trt 1.15 ± 0.53 (± 0.40 , ± 0.23) VBF comb. 1.15 ± 0.53 (± 0.40 , ± 0.23) VBF comb. 1.15 ± 0.53 (± 0.40 , ± 0.23) VBF comb. 1.15 ± 0.33 (± 0.31 , ± 0.12) VH $\gamma\gamma$ 1.32 ± 0.33 (± 0.31 , ± 0.12) VH $\gamma\gamma$ 1.32 ± 0.33 (± 0.31 , ± 0.12) VH comb. 1.02 ± 0.18 (± 0.11 , ± 0.12) VH comb. 1.02 ± 0.17 (± 0.11 , ± 0.12) VH comb. 1.10 ± 0.16 (± 0.11 , ± 0.12) VH comb. 1.10 ± 0.16 (± 0.11 , ± 0.12) VH comb. 1.10 ± 0.16 (± 0.11 , ± 0.12) VH comb. 1.10 ± 0.38 (± 0.38)	ggF WW	1.08	-0.19 (± 0.11 , ± 0.15)
ggF comb. 1.00 ± 0.07 (± 0.05 , ± 0.05) VBF $\gamma\gamma$ 1.31 ± 0.26 (± 0.18 , ± 0.18) VBF ZZ 1.25 ± 0.50 (± 0.48 , ± 0.12) VBF WW 0.60 ± 0.36 (± 0.28 , ± 0.21) VBF trt 1.15 ± 0.57 (± 0.48 , ± 0.12) VBF trt 1.15 ± 0.57 (± 0.42 , ± 0.40) VBF comb. 1.15 ± 0.57 (± 0.42 , ± 0.40) VBF comb. 1.15 ± 0.57 (± 0.42 , ± 0.40) VBF comb. 1.15 ± 0.57 (± 0.13 , ± 0.24) VBF comb. 1.15 ± 0.18 (± 0.13 , ± 0.24) VH $\gamma\gamma$ 1.32 ± 0.33 (± 0.31 , ± 0.11) VH $\gamma\gamma$ 1.32 ± 0.33 (± 0.31 , ± 0.11) VH comb. 1.10 ± 0.18 (± 0.11 , ± 0.12) VH comb. 1.10 ± 0.18 (± 0.11 , ± 0.12) VH comb. 1.10 ± 0.18 (± 0.11 , ± 0.12) VH comb. 1.10 ± 0.16 (± 0.11 , ± 0.12) VH comb. 1.10 ± 0.56 (± 0.40 , ± 0.33 , ± 0.06) ± 0.22 , ± 0.06 (± 0.29 , ± 0.57) tH+tH $\gamma\gamma$ 0.90 ± 0.27 (± 0.25 , ± 0.06) ± 0.06 (± 0.29 , $\pm 0.$	ggF ττ ⊢	1.02	+ 0.60 - 0.55 ((+0.39 + 0.47) - 0.38 - 0.39
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ggF comb.	1.00	± 0.07 (± 0.05 , ± 0.05)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VBF γγ	1.31	+ 0.26 - 0.23 (+0.19 + 0.18 - 0.18, -0.15)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VBF ZZ	1.25	+ 0.50 - 0.41 ($^{+0.48}_{-0.40}$, $^{+0.12}_{-0.08}$)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.60	+ 0.36 - 0.34 ($^{+0.29}_{-0.27}$, ± 0.21)
VBF bb $1.62 (-1.60, -0.24)$ VBF comb. $1.15 + 0.18 (-1.13, +0.12) - 0.17 (-1.01, -0.10)$ VH $\gamma\gamma$ $1.15 + 0.18 (-1.13, -0.10)$ VH $\gamma\gamma$ $1.32 + 0.33 (-0.29, -0.09)$ VH ZZ $1.53 + 1.13 (-1.10, -0.12)$ VH bb $1.02 + 0.18 (-0.11, -0.12)$ VH comb. $1.10 + 0.16 (-0.11, -0.12)$ VH comb. $1.10 + 0.16 (-0.23, -0.06)$ ttH+tH $\gamma\gamma$ $0.90 + 0.27 (-0.23, -0.06)$ ttH+tH VV $1.72 + 0.56 (-0.42, +0.38)$ ttH+tH thb $0.79 + 0.60 (-0.74, -0.57)$ ttH+tH comb. $1.10 + 0.20 (-0.15, -0.13)$	VBF ττ ι	1.15	+ 0.57 - 0.53 ($^{+0.42}_{-0.40}$, $^{+0.40}_{-0.35}$)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VBF bb	3.03	+ 1.67 - 1.62 ($^{+1.63}_{-1.60}$, $^{+0.38}_{-0.24}$)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VBF comb.	1.15	+ 0.18 - 0.17 (± 0.13 , $^{+ 0.12}_{- 0.10}$)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VH γγ	1.32	+ 0.33 - 0.30 ($^{+0.31}_{-0.29}$, $^{+0.11}_{-0.09}$)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VH ZZ	1.53	+ 1.13 - 0.92 ($^{+1.10}_{-0.90}$, $^{+0.28}_{-0.21}$)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VH bb	1.02	+ 0.18 - 0.17 (± 0.11 , $^{+ 0.14}_{- 0.12}$)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VH comb.	1.10	+ 0.16 - 0.15 (± 0.11 , $^{+0.12}_{-0.10}$)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ttH+tH γγ 💼	0.90	+ 0.27 - 0.24 ($^{+0.25}_{-0.23}$, $^{+0.09}_{-0.06}$)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ttH+tH VV	1.72	+ 0.56 - 0.53 ($^{+0.42}_{-0.40}$, $^{+0.38}_{-0.34}$)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>ttH</i> + <i>tH</i> ττ μ	1.20	+ 1.07 - 0.93 ($^{+0.81}_{-0.74}$, $^{+0.70}_{-0.57}$)
ttH+tH comb. ➡ 1.10 +0.21 (+0.16 , +0.14) -2 0 2 4 6 8	ttH+tH bb	0.79	+ 0.60 - 0.59 (± 0.29 , $^{+ 0.52}_{- 0.51}$)
-2 0 2 4 6 8	ttH+tH comb.	1.10	+ 0.21 - 0.20 ($^{+0.16}_{-0.15}$, $^{+0.14}_{-0.13}$)
-2 0 2 4 6 8				
-2 U Z 4 0 0	2 0 2 1		6	0
	-2 0 2 4		Ö	Õ

 $\sigma \times B$ normalized to SM

In this talk

- Full suite of Run 2 measurements in progress
- Much recent work points to a new phase in our engagement with the Higgs boson data
 - \rightarrow Rare processes
 - kinematic tails, unusual signatures
 - \rightarrow Detailed study of interaction vertices
 - CP & polarization
 - \rightarrow Closing in on 2nd generation fermions
 - Evidence for $h \rightarrow \mu\mu$, searches for $h \rightarrow cc$
- Cannot hope to do justice to the body of work that exists
- Aspire to give a flavor of what is compelling and illuminate the path forward

ERSITY OF

ATLAS $h \rightarrow \ell \ell \gamma$ Evidence

- Low-mass: $m_{\ell\ell} < 30$ GeV, so γ^* , not Z, is dominant
- Categorization by final state lepton flavor (electron or muon), pTt, VBF tag (if present)
 - → pTt is "strongly correlated with the transverse momentum of the llγ system, but has better experimental resolution"
- Dedicated treatment of overlapping calorimeter showers from eeγ for low mass

ATLAS $h \rightarrow \ell \ell \gamma$ Evidence

- Low-mass: $m_{\ell\ell} < 30$ GeV, so γ^* , not Z, is dominant
- Categorization by final state lepton flavor (electron or muon), pTt, VBF tag (if present)

🚥 🚰 Fermilab

VERSITY OF Nois **3.2** σ observed, 2.1 σ expected

c. mills

CMS Vh, $h \rightarrow WW$

- Associated production modes more powerful as datasets grow
- Reintroduced channel $Z \rightarrow \ell \ell$ and $WW \rightarrow \ell \nu q q$ (done in Run 1)
- New channel with same-sign dileptons (similar done in ATLAS Run 1 measurement)

CMS Vh, $h \rightarrow WW$

- Associated production modes becoming more powerful with larger datasets
- Sensitivity to new physics in tails of momentum distribution
 - → *parameterize in* Simplified Template Cross Sections

Higgs boson pair production

- Triple-Higgs-boson coupling λ is a fundamental parameter of the Standard Model
- Measuring the shape of the scalar potential
- Connection to electroweak baryogenesis
- Plethora of final states

‡Fermilab

Reviews in Physics Vol. 5, Nov. 2020, 100039

c. mills

diHiggs status

CP violation

• What is it?

ERSITY OF

- \rightarrow Charge conjugation changes sign
- \rightarrow Parity inverts space coordinates $\vec{x} \leftrightarrow -\vec{x}$
- CP quantum number is a property of a particle, CP violation is the property of a process
- Why do we care?
 - \rightarrow Sakharov criteria for baryogenesis
 - First-order phase transition (interactions out of thermal equilibrium)
 - Baryon number violation
 - C and CP violation
- History in particle physics
 - \rightarrow First observed in kaon particle-antiparticle oscillations in 1964
 - \rightarrow Studied in b-quarks at BaBar and Belle
 - CP violation in CKM matrix established, but not enough to manage baryogenesis

CMS $h \rightarrow \tau \tau$ Yukawa CP

- CP violation in the couplings of h would be direct sign of new physics
 - → Extensively studied in gauge boson sectors, but more plausible (may occur at tree level) in couplings to fermions
- parameterize via $\alpha^{H\tau\tau}$, 0 degrees in SM
 - \rightarrow as large as 27 degrees in nMSSM

CMS $h \rightarrow \tau \tau$ Yukawa CP

ATLAS $h \rightarrow WW CP: ggH$

19

- Spin and parity of H[125] established: $J^P = 0+$
- Mixing, CP-odd couplings, also well-constrained
- Study interference of CP-even and CP-odd coupling to gluons in ggH + 2 jet events

ATLAS $h \rightarrow WW CP: VBF$

 Focus on H+2j production: VBF production separating coupling to longitudinally and transversely polarized vector bosons

ATLAS h to charm

- 2nd generation quark, branching ratio ~3%
- bottom vs charm: must distinguish by particle lifetimes in jet tagging
 - \rightarrow veto b-tagged jets
- Associated production: categorize by number of charged leptons from W/Z decay
- Categorize by number of charm-tagged jets

ATLAS-CONF-2021-021

🚰 Fermilab

VERSITY OF NOIS

AGO

ATLAS h to charm

ATLAS $h \rightarrow \mu\mu$ Search

ATLAS HIGG-2019-14,

135980

🚾 🚰 Fermilab

CAGO

Phys. Lett. B 812 (2021)

- $h \rightarrow \mu\mu$ a deceptively simple target
- SM BR $(2.17 \pm 0.04) \times 10^{-4}$
- FSR recovery
- Categorized in ggF, VBF, VH, ttH

CMS h $\rightarrow \mu\mu$ Evidence

- Categorized in ggF, VBF, VH, ttH
- Run 1 + Run 2, combined
 - \rightarrow Run 1 adds 1%

VERSITY OF Nois

🚥 辈 Fermilab

- FSR photon recovery
- VBF most sensitive category
 - → DNN incorporates $m_{\mu\mu}$, $\Delta \eta(\mu\mu)$, quark-gluon jet discriminant, + others
 - → Sidebands still defined by $m_{\mu\mu}$, with SR: 115 < $m_{\mu\mu}$ < 135 GeV
 - Background not purely data-driven: sensitivity improved by having MC models, since would be stats limited in high-purity categories with small event yields

c. mills

24

CMS h $\rightarrow \mu\mu$ Evidence

CMS

Conclusions

- Run 2 yielding a comprehensive picture of the observed Higgs boson
 - → Analyses moving to a new phase as increased datasets and analysis sophistication give access to new signatures
- Run 3 to start in Spring 2022
 - \rightarrow CMS magnet on at full strength last week
- High-luminosity LHC coming up in 2027
- Deep connection to possible BSM physics makes this a compelling area for continued investigation
 - → Have emphasized connection to baryogenesis through modified couplings
 - \rightarrow Interactions/connections to dark matter
 - \rightarrow Direct BSM searches

ZFerm

ERSITY OF

CMS hh \rightarrow 4b, bbyy

c. mills

INIVERSITY OF LLINOIS

🐵 **芬 F**ermilab

CMS

HL-LHC overview

- Start of the high-luminosity LHC (HL-LHC) in 2027 will be the culmination of over a decade of intensive work
- 14 TeV proton-proton collisions, 3000-4000 fb⁻¹ at instantaneous luminosity of 2 x 10³⁵ cm⁻¹s⁻¹
- Comparison: Run 3 imminent at 13 TeV (possible upgrade to 14 TeV), 300-350 fb⁻¹ and inst lumi up to 2 x 10³⁴ cm⁻¹s⁻¹
- Up to 140-200 interactions per bunch crossing

