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DM detection

production at colliders

direct detection

indirect from annihil in galactic halo or center

from annihil in galactic halo or centerp̄

ν, ν̄ from annihil in massive bodies

from annihil in galactic halo or centerd̄

e+
Fermi, ICT, radio telescopes...

PAMELA, Fermi, HESS, AMS,balloons…

 from annihil in galactic center or halo 
 and from secondary emission

GAPS, AMS

SK, Icecube, Antares
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diffusion energy loss convective wind source spallations

Salati, Chardonnay, Barrau, 
Donato, Taillet, Fornengo, Maurin, 

Brun... ‘90s, ‘00s

spectrum

    and      from  DM annihilations in halop̄ e+

[uncert]

Indirect Detection: charged CRs



Indirect Detection: charged CRs
    and      from  DM annihilations in halop̄ e+

Previous historical determinations: 
Donato et al., 2003+

Delahaye et al. 0712.2312
Cirelli et al. 1012.4515 
Evoli et al. 1108.0664

…
See also: 

Génolini et al. 1904.08917

Génolini, Cirelli et al. 2103.04108

Sizable reduction of the propagation uncertainties



Antiprotons
Recent developments Cuoco, Krämer, Korsmeier 1610.03071

finds a possible excess

mDM = 80 GeV, bb, 
thermal cross-section

(formally ~4.5σ)

similarly: 
Cui, Yuan, Tsai, Fang 1610.03840 
Huang + 1611.01983  (light mediators) 
Feng, Zhang 1701.02263 
Cuoco, Heisig, Krämer, Korsmeier 1704.08258 
Boschini+ (Galprop) 1704.06337 (but οnly 1σ)

reiterated: 
Cuoco, Heisig, K3 1903.01472 
Cholis, Linden, Hooper 1903.02549



Antiprotons
Recent developments Cuoco, Krämer, Korsmeier 1610.03071
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criticisms:

propagation parameters
determined with
p, He data only,
w/o B/C

excess evaporates
including low energies
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B/C and p probably probe 
different regions

it’s a very tricky region,
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Recent developments Cuoco, Krämer, Korsmeier 1610.03071

finds a possible excess

mDM = 80 GeV, bb, 
thermal cross-section

excess exists

but significance ~1σ,
given all uncertainties

similarly: 
Cui, Yuan, Tsai, Fang 1610.03840 
Huang + 1611.01983  (light mediators) 
Feng, Zhang 1701.02263 
Cuoco, Heisig, Krämer, Korsmeier 1704.08258 
Boschini+ (Galprop) 1704.06337 (but οnly 1σ)

Reinert, Winkler 1712.00002

Boudaud et al. 
1906.0719

“antiprotons 
are consistent 
with a secondary 
astrophysical 
origin”
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Positrons (and electrons)

production at colliders

direct detection

indirect from annihil in galactic halo or center

from annihil in galactic halo or centerp̄

ν, ν̄ from annihil in massive bodies

from annihil in galactic halo or centerd̄

e+

SK, Icecube, Km3Net

Fermi, ICT, radio telescopes...

PAMELA, Fermi, HESS, AMS,balloons…

 from annihil in galactic center or halo 
 and from secondary emission

GAPS, AMS



Data: leptons
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DMDMÆ mm, NFW profile

After AMS-02 H2014L

Dark Matter interpretation

PAMELA e+

+ AMS2014 e+ 

FERMI e±

+ HESS e± 2015
+ VERITAS e± 2016

- leptophilic 

- mDM      1 TeV 

- huge annihilation 
cross section

⇠

M. Cirelli - compilation ICRC 2015
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However:
Dark Matter interpretation
‣ increased precision brings increased tension 

“The improved accuracy of AMS-02 […] 
  now excludes channels previously allowed.”

M. Boudaud et al., 1410.3799



However:
Dark Matter interpretation
‣ increased precision brings increased tension 

“The improved accuracy of AMS-02 […] 
  now excludes channels previously allowed.”

‣constraints: gamma rays, neutrinos, CMB…

Planck 2015 (1502.01589)
T.Slatyer 1506.03811

M. Boudaud et al., 1410.3799



Data: leptons

e++e-Voyager-1 left the heliosphere in 08.2012

First ever measurement of sub-GeV e++e-

low energy

Cummings+ (Voyager-1 coll.), The Astrophysical Journal, 831:18, 2016  

courtesy of M. Boudaud, based on 
Cummings+ (Voyager-1 coll.),  

The Astrophysical Journal, 831:18, 2016 



low energy
Dark Matter interpretation

Constraints on sub-GeV DM

Boudaud, Lavalle, Salati 1612.07698
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Constraints on Primordial Black Holes

DM could consist of PBHs

huge range of sizes:

constraints 

M ≃ 1015(t/10−23 sec) g

M. Cirelli, A. Strumia, J. Zupan to appear
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low energy
Dark Matter interpretation

Constraints on Primordial Black Holes

DM could consist of PBHs

huge range of sizes:

constraints 

‘small’ PBHs emit today by
Hawking evaporation

M ≃ 1015(t/10−23 sec) g

T =
1

8π GN M

dM
dt

≃ − 5 × 1025 f (M ) ( g
M )

2

g/s

dN
dt dE

=
27
2π

G2M2E2

eE/T + 1

rate

spectrum
M. Cirelli, A. Strumia, J. Zupan to appear
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production at colliders

direct detection

indirect from annihil in galactic halo or center

from annihil in galactic halo or centerp̄

ν, ν̄ from annihil in massive bodies

from annihil in galactic halo or centerd̄

e+
Fermi, ICT, radio telescopes...

 from annihil in galactic center or halo 
 and from secondary emission

GAPS, AMS

SK, Icecube, Antares

Gamma rays



     from  DM annihilations in galactic center�
Basic picture



S. Murgia for FERMI-LAT - ICRC 2015 
T. Porter for FERMI-LAT - ICRC 2015 #815 

Fermi coll. 1511.02938

GC GeV excess
Dark Matter interpretation:
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Dark Matter interpretation:

S. Murgia for FERMI-LAT - ICRC 2015 
T. Porter for FERMI-LAT - ICRC 2015 #815 

Fermi coll. 1511.02938



GC GeV excess
Dark Matter interpretation:

bb  
35.25 GeV 
2.15 x 10-26 cm3/s

Best fit:  
∼35 GeV, quarks, ∼thermal σv

A compelling case 
for annihilating DM 

Daylan, Finkbeiner, Hooper, Linden,  
Portillo, Rodd, Slatyer 1402.6703

F. Calore et al. 1411.4647

…as good as it can get.



Also:

GC GeV excess
Dark Matter interpretation:
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Cirelli, Gaggero,  
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GC GeV excess
Dark Matter interpretation:
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Nor CMB

Also:
Bringmann, Vollmann,  
Weniger 1406.6027

Hooper, Linden, Mertsch 
1410.1527

Planck  
2015

best fit  
GC GeV  
excess

best fit 

best fit 

FERMI 1503.02641



GC GeV excess

D. Gaggero et al 1507.06129

DM
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An additional steady-source spike of CRs (from SNRs?) that emit via ICS 

F. Calore 1506.05119

Leptonic outbursts: old + young (1 + 0.1 Myr) 
(but even this is not ideal)

Bartels…Weniger 1506.05104 

‘Astro’ interpretation(s):

Unresolved point sources (MSPs?)

Lee, Lisanti…Slatyer 1506.05124

What does the FERMI coll. say? 
Unclear…

• Excess exists (1511.02938), adding 
DM improves the fit.

• Excesses elsewhere in the GP, the 
GC one not significant (1704.03910).

• We found point sources! DM 
‘strongly disfavored’ (1705.00009v1).

• Sure? (Bartels et al., 1710.10266)
• Ah, no, sorry, we had a mistake 

(1705.00009v2).
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An additional steady-source spike of CRs (from SNRs?) that emit via ICS 

F. Calore 1506.05119

Leptonic outbursts: old + young (1 + 0.1 Myr) 
(but even this is not ideal)

Bartels…Weniger 1506.05104 

‘Astro’ interpretation(s):

Unresolved point sources (MSPs?)

Lee, Lisanti…Slatyer 1506.05124

What does the FERMI coll. say? 
Unclear…

• Excess exists (1511.02938), adding 
DM improves the fit.

• Excesses elsewhere in the GP, the 
GC one not significant (1704.03910).

• We found point sources! DM 
‘strongly disfavored’ (1705.00009v1).

• Sure? (Bartels et al., 1710.10266)
• Ah, no, sorry, we had a mistake 

(1705.00009v2).

questioned in  
Leane, Slatyer 1904.0843: 
analysis is misattributing  

DM to point source?  
Dark Matter strikes back  

at the GC



(2009      )

Indirect detection: photons

Past/current experiments:
Integral, Comptel, Fermi
(2002      ) (1991-2000)
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Indirect detection: photons

-INTEGRAL

adapted from 1611.02232

MeV 
gap

How to do better?
ICS & X-rays!

Cirelli, Fornengo, Kavanagh, Pinetti 2007.11493



Sub-GeV DM & X-rays
Annihilation channels, focus on the MW (assume standard NFW profile)

DM DM → e+e−

DM DM → μ+μ−

DM DM → π+π−
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but not for  

decaying ‘at rest’!
μ
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Key message:
ICS allows to probe
sub-GeV DM with 
X-ray data
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DM detection

production at colliders

direct detection

indirect from annihil in galactic halo or center

from annihil in galactic halo or centerp̄

ν, ν̄ from annihil in massive bodies

from annihil in galactic halo or center

 from annihil in galactic center or halo 
 and from secondary emission

GAPS, AMS

�

d̄

e+

SK, Icecube, Km3Net

Fermi, ICT, radio telescopes...

PAMELA, Fermi, HESS, AMS,balloons…

from annihil in galactic halo or center
AMS?

He



Indirect DetectionIndirect Detection
 from  DM annihilations in halo

p̄

n̄

‘coalescence’
coalescence momentum Cirelli, Fornengo, Vittino, Taoso 2014 

Carlson, Linden, Ibarra, Profumo, Wild 2014

event-by-event 
with Pythia

He

p0 = 195 MeV

3H
3
He |~k1 � ~k2|  p0

|~k1 � ~k3|  p0

|~k2 � ~k3|  p0 b!cju!bscjusbszｉ
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eight (two of which 4He)
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FIG. 2. As in fig. 1, but for the predicted antiproton and antideuteron fluxes for 100 GeV (yellow lines) and 1 TeV (blue lines) dark matter
particles pair-annihilating into W+W � (left panel) and b̄b (right panel), normalized to yield one 3He per year overall. Spectra are computed
using �F = 500 MV, MethodAnn and MAX propagation.

(for the antideuteron flux predictions).
The figure illustrates that even generously accounting for

uncertainties in the coalescence process, antiproton fluxes
are too large for the W+W� annihilation final state (left
panel). However, for the b̄b final state, it is possible to
marginally be consistent with antiproton data. While this
is possible for various combinations of the propagation se-
tups, 3He-ISM interaction method and �F , all require setting
pA=3
0 to its maximum value. The scenario shown in the fig-

ure requires a thermally averaged pair-annihilation cross sec-
tion of h�vi = 3.58 ⇥ 10

�23
cm

3/s, which is inconsistent
with constraints from gamma-ray observations of local dwarf-
spheroidal (dSph) galaxies with the Fermi Large Area Tele-
scope (LAT) [20]. Moreover, AMS would expect, across the
entire available energy range, to observe about three 3He per
year rather than one.

Fig. 2 makes a different assumption about the tentative an-
tihelium events, and it shows results for masses of 100 GeV
(yellow) and 1 TeV (blue). Here we assume that the overall
antihelium event rate for T > 0.5 GeV/n is one event per year,
as the AMS collaboration roughly indicated. Once again,
the uncertainties in the antiproton and antideuteron fluxes are
driven primarily by the uncertainties in the coalescence pro-
cesses for 3He and D formation. The spectra in this figure
were computed using �F = 500 MV, MethodAnn and MAX
propagation.

A 100 GeV DM particle annihilating into W+W� is un-
able to explain the single 3He per year event rate without vi-
olating AMS’s p bounds. Annihilation into b̄b bodes better
to suppress constraints from antiproton fluxes. For 1 TeV we
find that one can get one antihelium event per year at AMS
without violating antiproton constraints or antideuteron con-
straints with only slight tension with antiproton constraints for

100 GeV. For this mass the required cross section is h�vi =

7.30 ⇥ 10
�26

cm
3/s while for m� = 1 TeV the cross section

is h�vi = 4.78 ⇥ 10
�25

cm
3/s. These cross sections are a

factor of ⇠ 2 above the Fermi-LAT dSph bound.
Furthermore, the flat antihelium spectrum from the bb̄ fi-

nal state means that an event rate of one 3He per year over
all energy bins is compatible with the single event whose en-
ergy is known for large enough dark matter mass. The prob-
ability of observing an antihelium particle with momentum
p = 40.3 ± 2.9 GeV is 21% for the 1 TeV case.

Assuming a DM explanation for the tentative 3He events,
the antiproton flux from dark matter would contribute signif-
icantly to the total antiproton flux at higher energies, perhaps
compatibly with a possible weak excess of energetic antipro-
tons [21, 22]. AMS-02 and GAPS would also be likely to de-
tect a significant amount of antideuterons, but non-detection
is also possible within the full range of values for the coales-
cence momenta.

Since the known 3He event is at relatively large momen-
tum, the level of the astrophysical background is a possible
concern. App. A of Ref. [4] and Ref. [23] study the astrophys-
ical antihelium background level, which indeed peaks only
slightly below 10 GeV/n. However, both find the background
level is at most at a few 10

�11
(m

2
s sr GeV/n)

�1, much
below the level required to explain the reported antihelium
events. While Ref. [24] recently suggested the background
may be 1-2 orders of magnitude larger, that would still be
about an order of magnitude less than required to give one
event per year at AMS. A secondary cosmic-ray origin for the
reported events is therefore highly unlikely.

Finally, we comment on constraints from gamma rays and
other indirect searches. For the masses and cross sections
we consider, there could be tension with gamma-ray obser-

update: Blum, Ng et al (1704.05431) 
find very high bkg calibrating on ALICE data

update: 
Coogan, Profumo (1705.09664) 
find 5 He from DM in 5yrs possible 
in AMS, barely compatible with p, D
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FIG. 2. As in fig. 1, but for the predicted antiproton and antideuteron fluxes for 100 GeV (yellow lines) and 1 TeV (blue lines) dark matter
particles pair-annihilating into W+W � (left panel) and b̄b (right panel), normalized to yield one 3He per year overall. Spectra are computed
using �F = 500 MV, MethodAnn and MAX propagation.

(for the antideuteron flux predictions).
The figure illustrates that even generously accounting for

uncertainties in the coalescence process, antiproton fluxes
are too large for the W+W� annihilation final state (left
panel). However, for the b̄b final state, it is possible to
marginally be consistent with antiproton data. While this
is possible for various combinations of the propagation se-
tups, 3He-ISM interaction method and �F , all require setting
pA=3
0 to its maximum value. The scenario shown in the fig-

ure requires a thermally averaged pair-annihilation cross sec-
tion of h�vi = 3.58 ⇥ 10

�23
cm

3/s, which is inconsistent
with constraints from gamma-ray observations of local dwarf-
spheroidal (dSph) galaxies with the Fermi Large Area Tele-
scope (LAT) [20]. Moreover, AMS would expect, across the
entire available energy range, to observe about three 3He per
year rather than one.

Fig. 2 makes a different assumption about the tentative an-
tihelium events, and it shows results for masses of 100 GeV
(yellow) and 1 TeV (blue). Here we assume that the overall
antihelium event rate for T > 0.5 GeV/n is one event per year,
as the AMS collaboration roughly indicated. Once again,
the uncertainties in the antiproton and antideuteron fluxes are
driven primarily by the uncertainties in the coalescence pro-
cesses for 3He and D formation. The spectra in this figure
were computed using �F = 500 MV, MethodAnn and MAX
propagation.

A 100 GeV DM particle annihilating into W+W� is un-
able to explain the single 3He per year event rate without vi-
olating AMS’s p bounds. Annihilation into b̄b bodes better
to suppress constraints from antiproton fluxes. For 1 TeV we
find that one can get one antihelium event per year at AMS
without violating antiproton constraints or antideuteron con-
straints with only slight tension with antiproton constraints for

100 GeV. For this mass the required cross section is h�vi =

7.30 ⇥ 10
�26

cm
3/s while for m� = 1 TeV the cross section

is h�vi = 4.78 ⇥ 10
�25

cm
3/s. These cross sections are a

factor of ⇠ 2 above the Fermi-LAT dSph bound.
Furthermore, the flat antihelium spectrum from the bb̄ fi-

nal state means that an event rate of one 3He per year over
all energy bins is compatible with the single event whose en-
ergy is known for large enough dark matter mass. The prob-
ability of observing an antihelium particle with momentum
p = 40.3 ± 2.9 GeV is 21% for the 1 TeV case.

Assuming a DM explanation for the tentative 3He events,
the antiproton flux from dark matter would contribute signif-
icantly to the total antiproton flux at higher energies, perhaps
compatibly with a possible weak excess of energetic antipro-
tons [21, 22]. AMS-02 and GAPS would also be likely to de-
tect a significant amount of antideuterons, but non-detection
is also possible within the full range of values for the coales-
cence momenta.

Since the known 3He event is at relatively large momen-
tum, the level of the astrophysical background is a possible
concern. App. A of Ref. [4] and Ref. [23] study the astrophys-
ical antihelium background level, which indeed peaks only
slightly below 10 GeV/n. However, both find the background
level is at most at a few 10

�11
(m

2
s sr GeV/n)

�1, much
below the level required to explain the reported antihelium
events. While Ref. [24] recently suggested the background
may be 1-2 orders of magnitude larger, that would still be
about an order of magnitude less than required to give one
event per year at AMS. A secondary cosmic-ray origin for the
reported events is therefore highly unlikely.

Finally, we comment on constraints from gamma rays and
other indirect searches. For the masses and cross sections
we consider, there could be tension with gamma-ray obser-

update: Blum, Ng et al (1704.05431) 
find very high bkg calibrating on ALICE data

update: 
Coogan, Profumo (1705.09664) 
find 5 He from DM in 5yrs possible 
in AMS, barely compatible with p, D

alternative: Poulin, Salati, Cholis, Kamionkowski, Silk (1808.08961) 
anti-He from anti-clouds or anti-stars!
however:   strong constraints from gamma-rays, CMB etc

need exotic (anti-)BBN to have right isotopic ratios…
also: Heck, Rajaraman (1906.01667): 

He from decay of exotic Φ carrying negative baryon number (but very fine tuned or killed by antiprotons)
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ID with cosmic rays is in principle 
a very powerful tool, but: 

in e±: long standing HE ‘excesses’, new LE chances 
in p: still large uncertainties, but improving 
in d: challenging flux 
in He: hopeless? who knows!… 
in ν: challenging detection 
in γ: astrophysical background 

Solution: 
- multimessenger         - switch-off astrophysics
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