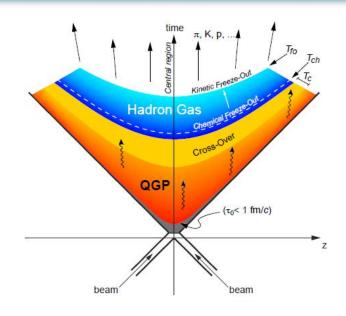


Why study heavy flavours?

Heavy-ion collisions:

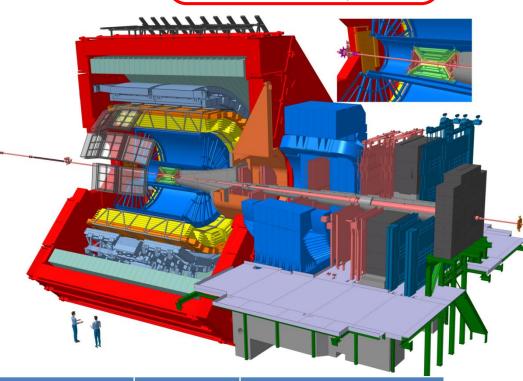

- ☐ Charm and beauty quarks produced in initial hard scatterings, prior to the formation of the quark-gluon plasma (QGP)
 - $\tau_{c/b} \sim 0.01\text{-}0.1 \text{ fm/}c < \tau_{QGP} (\sim 0.3 \text{ fm/}c)$
- ☐ Flavour conserved by the strong interaction
- ☐ Experience the full collision history
 - Excellent probes to characterise the QGP

□ Open heavy flavours:

- In-medium parton energy loss → colour-charge and quark-mass dependence
- Heavy-quark participation in the collective expansion, thermalisation of the medium
- Modification of hadronisation mechanism in the medium

Quarkonia:

- Colour screening in the QGP → suppression
- Charmonium regeneration
- p-Pb collisions: control experiment, cold nuclear matter effects, QGP formation in high-multiplicity events?
- pp collisions: reference, tests of pQCD-based predictions, production mechanisms


ALICE layout

Central Barrel, $|\eta| < 0.9$

vertexing (ITS), tracking (ITS, TPC), PID (ITS, TPC, TOF, TRD, HMPID, Calorimeters)

Forward/ Backward detectors (V0, T0, ZDC): Trigger Timing Multiplicity Centrality Event plane

Muon Spectrometer $-4 < \eta < -2.5$

Heavy-flavour channels

•
$$D^0 \rightarrow K^-\pi^+$$

•
$$D_s^+ \rightarrow \phi (\rightarrow K^-K^+)\pi^+$$

• D, B
$$\rightarrow$$
 eX

• D, B
$$\rightarrow \mu X$$

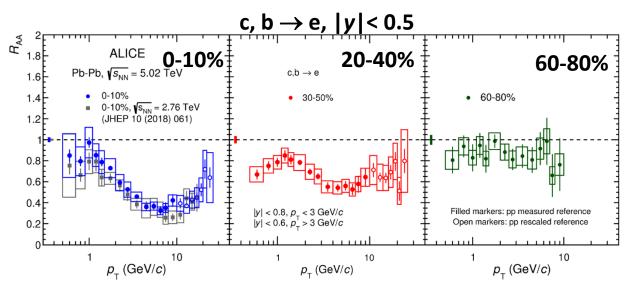
■
$$J/\psi \rightarrow e^-e^+$$

•
$$J/\psi$$
, ψ (2S) $\rightarrow \mu^{-}\mu^{+}$

•
$$\Upsilon$$
 (1S, 2S, 3S) $\to \mu^- \mu^+$

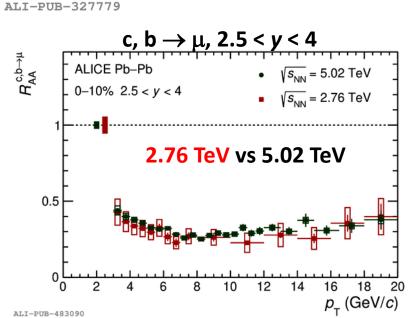
•
$$\Lambda_c^+ \to pK_s^0$$
, $\Lambda_c^+ \to pK^-\pi^+$

$$\blacksquare \quad \Xi_c^{\ 0} \rightarrow e^+ \Xi^- v_e, \, \Xi_c^{\ 0} \rightarrow \pi^+ \Xi^-$$

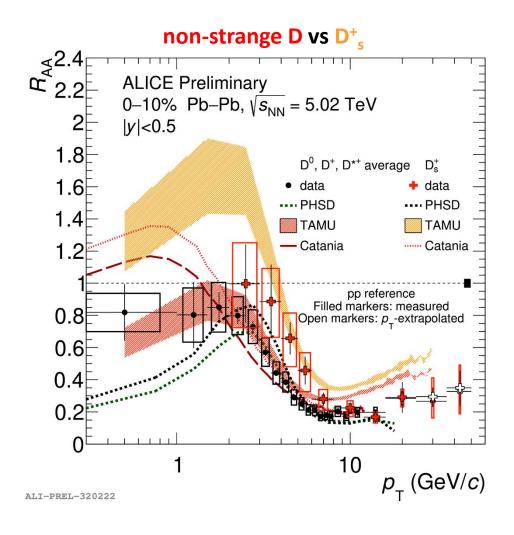

$$\blacksquare \quad \Xi_c^+ \rightarrow \pi^+ \pi^+ \Xi^-$$

$$\Sigma_c^0 \to \Lambda_c^+ \pi^-$$

System	year	$\sqrt{s_{ m NN}}$ (TeV)	L _{int} (μb ⁻¹) μ triggers
Pb-Pb	2010-2011	2.76	~75
Pb-Pb	2015 + 2018	5.02	~225 + 750
Xe-Xe	2017	5.44	~0.3


Heavy-flavour lepton R_{AA} in Pb–Pb collisions at 5.02 TeV

- $R_{\rm AA}(p_{\rm T}) = 1/\langle T_{\rm AA} \rangle \times \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$
- \square Measurement over a wide p_T interval from central to peripheral collisions
- □ Strong suppression, increasing with centrality: reaching a factor ~ 3 for $5 < p_T < 10$ GeV/c in the 10% most central collisions

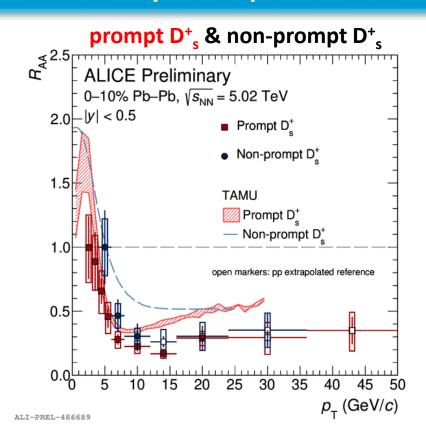

ALICE, PLB 804 (2020) 135377

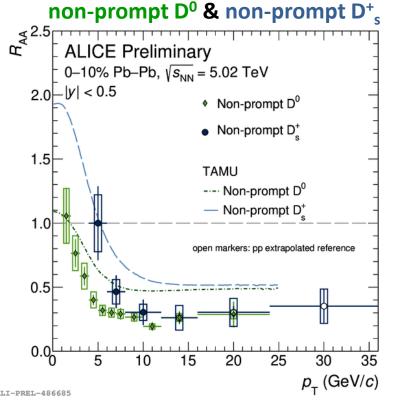
- Similar suppression of heavy-flavour decay leptons at mid and forward y
 - Heavy quarks experience in-medium energy loss over a wide y interval
- Similar suppression of heavy-flavour decay muons at 2.76 and 5.02 TeV

Non-strange and strange D-meson R_{AA} in Pb-Pb collisions

- \Box First time D⁰ mesons are measured down to $p_T = 0$
- ☐ Hint of a smaller suppression for D_s⁺ compared to non-strange D mesons at p_T < 8 GeV/c
 - Expected from strangeness enhancement in the QGP and charm-quark hadronisation via coalescence
- \square Similar suppression for D_s^+ and non-strange at $p_T > 8 \text{ GeV}/c$ where fragmentation is the dominant mechanism
- \square R_{AA} hierarchy described within uncertainties by transport models including hadronisation via coalescence

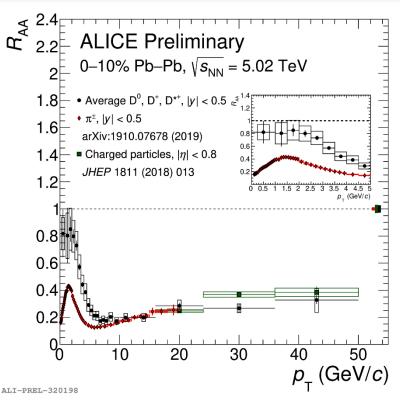
PHSD: PRC 93 (2016) 034906

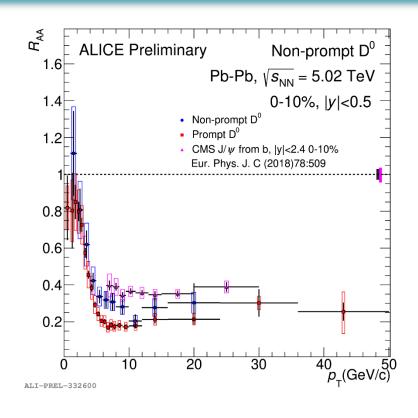

TAMU: PRL 124 (2020) 042301


PRC 96 (2017) 054901

Catania: EPJC 78 (2018) 348

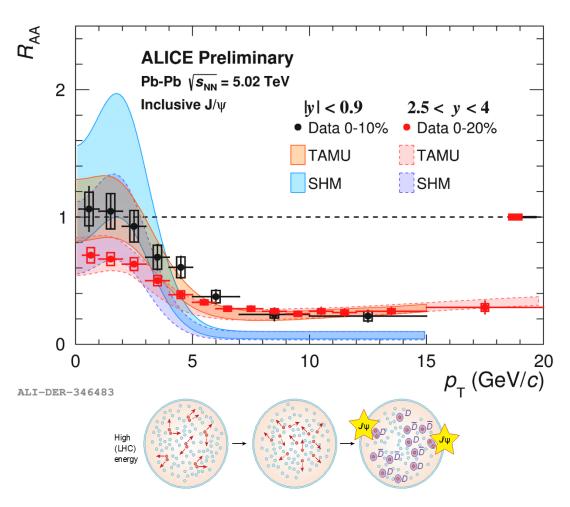
Non-prompt D⁰ and D_s⁺ R_{AA} in Pb–Pb collisions




TAMU: PRL 124 (2020) 042301 PRC 96 (2017) 054901

- ☐ First measurement of non-prompt D_s⁺ in central Pb—Pb collisions
- \Box Hint for a larger R_{AA} for non-prompt D_s^+ (from beauty decays) compared to prompt D_s^+ , as expected from mass dependent energy loss and beauty-quark coalescence
- \square Hint for R_{AA} (non-prompt D_s^+) > R_{AA} (non-prompt D^0) at low/intermediate p_T
 - > Interplay of beauty-quark hadronisation via coalescence and strangeness enhancement
- \square TAMU model predicts the difference in R_{AA} while overestimating the R_{AA} values

Open heavy-flavour R_{AA} hierarchy

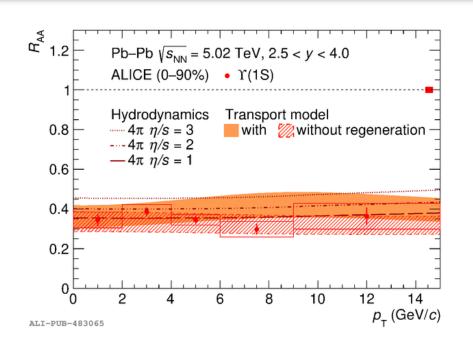

 π^{\pm} : ALICE, PRC 101 (2020) 044907

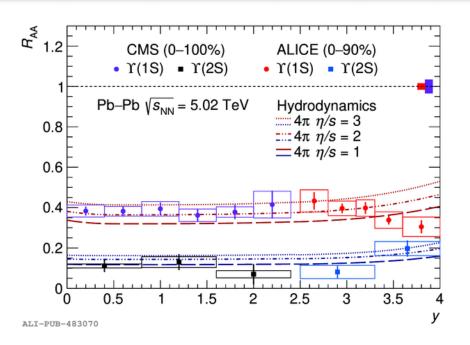
 $\Delta E(g) > \Delta E(c) > \Delta E(b) \rightarrow \Delta E(\pi^{\pm}) > \Delta E(D) > \Delta E(B) \xrightarrow{?} R_{AA}(\pi^{\pm}) < R_{AA}(D) < R_{AA}(B)$ as naively expected from colour-charge and mass dependent energy loss

- \square Comparable D-meson, charged-particle and $\pi^{\pm} R_{AA}$ for $p_T > 10 \text{ GeV/}c$
- \square D-meson R_{AA} larger than that of π^{\pm} at low/intermediate p_{T}
 - Interpretation not straightforward: possible mass and Casimir factor effects, different radial flow influence, different shapes of parton p_T distributions and different fragmentation functions [Djordjevic et al., PRL 112 (2014) 042302]
- \square R_{AA} (prompt D^0) $< R_{AA}$ (non-prompt D^0) $\sim R_{AA}$ (J/ $\psi \leftarrow b$)

Charmonia: $J/\psi R_{AA}$ in Pb–Pb collisions

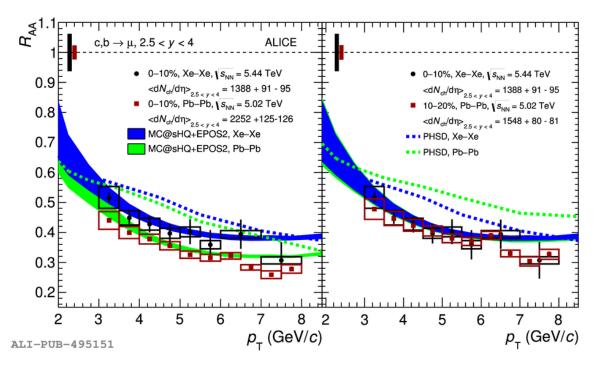
- ☐ Significant suppression at both midrapidity and forward rapidity in central Pb-Pb collisions
- Less suppression at low p_T and midrapidity compared to forward rapidity
 - Interplay between suppression mechanism and regeneration from charm quarks
- \square R_{AA} (inclusive J/ ψ) well described by the TAMU transport model over the whole p_T interval and the SHM statistical hadronisation model up to $p_T \sim 5 \text{ GeV/}c$ at both midrapidity and forward rapidity


SHM: JHEP 07 (2021) 035


TAMU: PRL 124 (2020) 042301

PRC 96 (2017) 054901

Bottomonia: $\Upsilon(1S)$ and $\Upsilon(2S)$ R_{AA} in Pb–Pb collisions

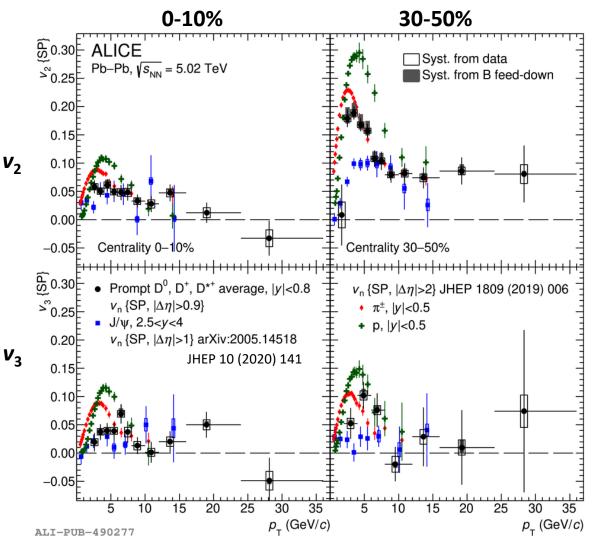

ALICE, PLB 822 (2021) 136579

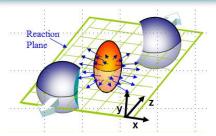
TM: PRC 96 (2017) 054901 Hydro: Universe 2 (2016) 16

- \Box Clear suppression of $\Upsilon(1S)$ production at forward rapidity: a factor ~3, independently of p_T
 - > Regeneration effects small
- \square Dependence of $\Upsilon(1S)$ suppression on y in the ALICE acceptance
- \square Sequential suppression of bottomonia: $\Upsilon(2S)$ suppression stronger by a factor 2-3 compared to $\Upsilon(1S)$
- $\Upsilon(1S)$ suppression described by transport models with and without regeneration
- \square Some tension with the hydrodynamical model to describe the $\Upsilon(1S)$ R_{AA} at large y, large η /s values disfavoured

Heavy-flavour decay muons R_{AA} : Xe–Xe vs Pb–Pb collisions

ALICE, PLB 821 (2021) 136637


PSHD: PRC 93 (2016) 034906


MC@sHQ: PRC 89 (2014) 014905

- \Box Comparison of R_{AA} in different collision systems: sensitivity to path-length dependence of in-medium energy loss
- ☐ Smaller suppression in Xe—Xe than Pb—Pb collisions for same centrality classes
- \square Similar R_{AA} in Xe–Xe and Pb–Pb collisions for centrality classes with similar charged-particle multiplicity
- \square MC@sHQ+EPOS2: in fair agreement with the measured R_{AA} of c,b $\rightarrow \mu$ for both Pb–Pb and Xe–Xe collisions
- \square PSHD: difficulties to describe R_{AA} of c,b $\rightarrow \mu$ in both Xe–Xe and Pb–Pb collisions
 - > New constraints to transport model calculations

Heavy-flavour azimuthal anisotropy in Pb-Pb collisions

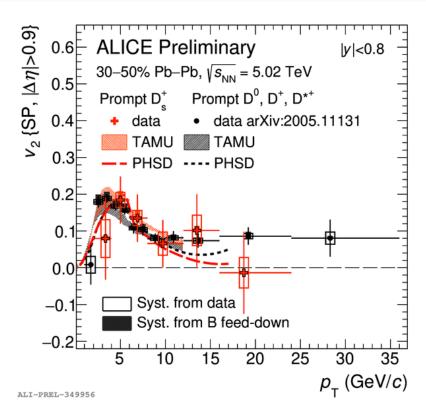
$$\frac{2\pi}{N} \frac{\mathrm{d}N}{\mathrm{d}\varphi} = 1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\varphi - \Psi_n)]$$

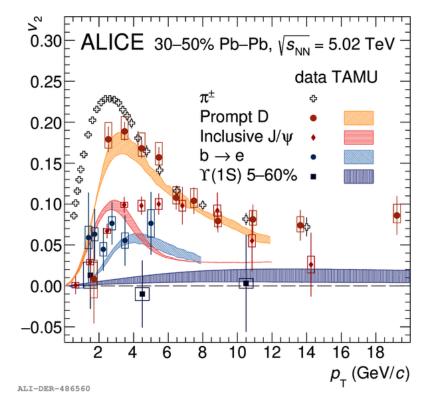
- v_2 : test participation in the collective expansion at low p_T path-length dependence of parton in-medium energy loss at high p_T
 - v_3 : initial-state event-by-event fluctuations
 - \square Significant positive v_2 , v_3 measured for D and J/ ψ
 - \square p_T < 3-4 GeV/c: mass hierarchy observed

$$> V_{n}(J\psi) < V_{n}(D) < V_{n}(p) < V_{n}(\pi^{\pm})$$

 \square 3-4 < p_T < 6-8 GeV/c: n-quark scaling and coalescence

$$> v_n(J/\psi) < v_n(D) \sim v_n(\pi^{\pm}) < v_n(p)$$

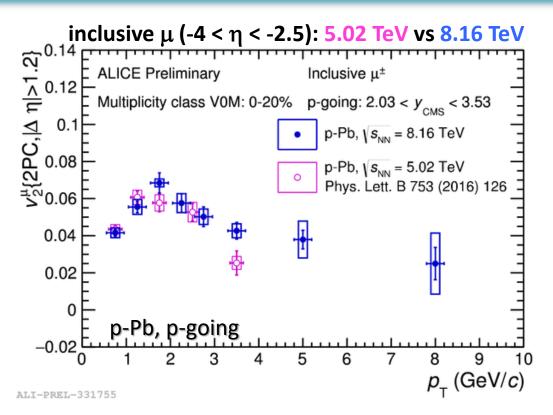

 \Box $p_T > 8 \text{ GeV/}c$: similar path-length dependence of in-medium energy loss for quarks and gluons

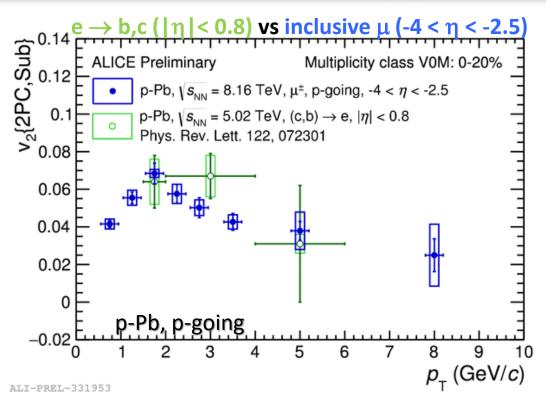

$$\succ V_{n}(J/\psi) \sim V_{n}(D) \sim V_{n}(\pi^{\pm}) \sim V_{n}(p)$$

ALICE, PLB 813 (2021) 136054

Heavy-flavour collectivity in Pb-Pb collisions

ALICE, PLB 813 (2021) 136054 ALICE, PRL 126 (2021) 162001 ALICE, JHEP 10 (2020) 141 ALICE, JHEP 09 (2018) 006


TAMU: PRL 124 (2020) 042301 PRC 96 (2017) 054901 PHSD: PLB 735 (2015) 014910 PRC 93 (2016) 0434906


- \square Similar v_2 for strange and non-strange D mesons
- \square Positive v_2 for electrons from beauty-hadron decays and no elliptic flow signal for $\Upsilon(1S)$
- □ TAMU model describes well the v_2 data except for J/ ψ for $p_T > 4$ GeV/c
- \square PHSD model reproduces well the measured v_2 of strange and non-strange D mesons
 - > Both TAMU and PHSH include charm and strange quark coalescence
- \blacksquare Precise measurements \rightarrow constraints to models for charm spatial diffusion coefficient:

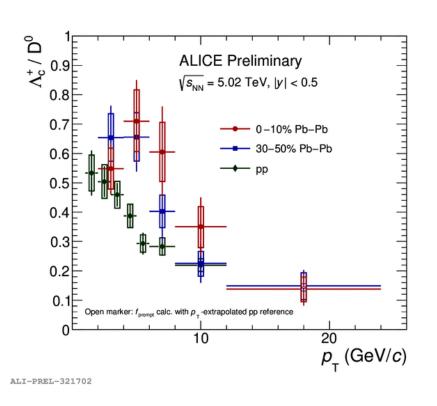
 $1.5 < 2\pi T_c D_s < 4.5 \quad (T_c \sim 155 \text{ MeV})$

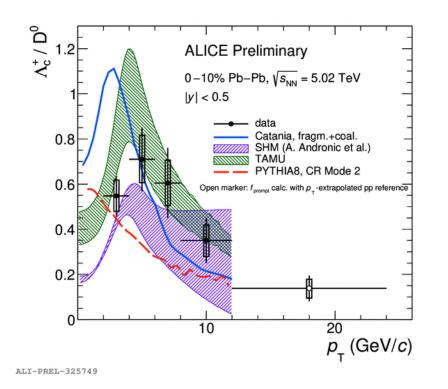
Collectivity in small collision systems at high multiplicity

- □ Inclusive μ dominated by open-heavy flavor hadron decays at $p_T > 2$ GeV/c
- \square Significant positive v_2 observed in the heavy-flavor sector in 0-20% p–Pb collisions
- \Box No significant $\sqrt{s_{NN}}$ dependence and rapidity dependence
- ☐ Similar behaviour observed in Pb—Pb collisions
- ☐ New constraints to understand the origin of collectivity in small collision systems

Conclusion

- □ Impressive amount of results produced in heavy-ion collisions in the heavy-flavour sector during Run 1 and Run 2 with ALICE
- □ Open heavy flavours
- Strong suppression of heavy-flavour yields: colour-charge and quark-mass dependence of in-medium parton energy loss and heavy-quark hadronisation via coalescence
- Anisotropic flow measurements: participation of heavy quarks to the QGP collective motion and sensitivity of charm to initial-state event-by-event fluctuations
- Comparisons Xe—Xe and Pb—Pb collisions: geometry and path-length dependence of in-medium energy loss
- Collectivity observed in high-multiplicity p
 —Pb collisions
- Quarkonia
- J/ψ suppression: interplay of suppression and recombination mechanisms
- Significant $J/\psi v_2$ at low/intermediate p_T from thermalisation of charm quarks
- Sequential suppression of Υ states and no azimuthal anisotropy for Υ(1S)
- ☐ LHC Run 3 crucial for heavy-flavour measurements
 - Improved precision on current measurements and access to new set of observables to characterize the QGP properties

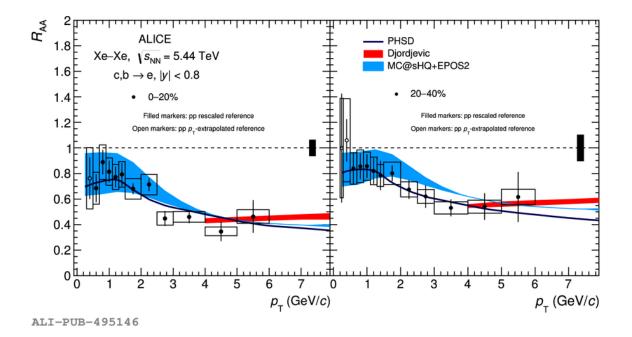



Backup slides

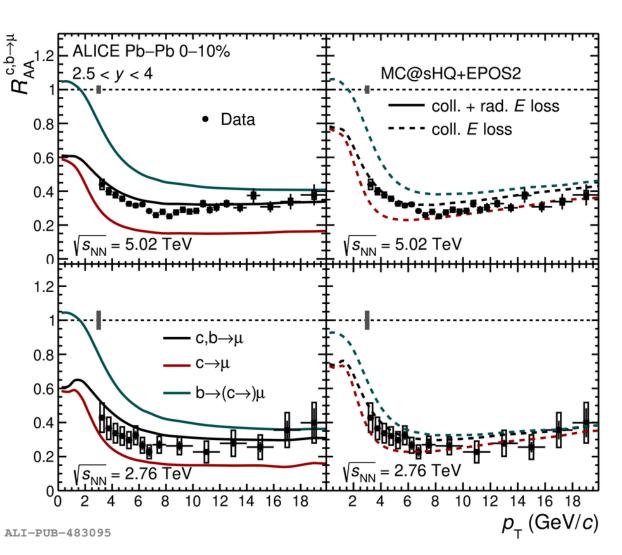
Differential yield ratios in Pb-Pb collisions

SHM: JHEP 07 (2021) 035 TAMU: PRL 124 (2020) 042301

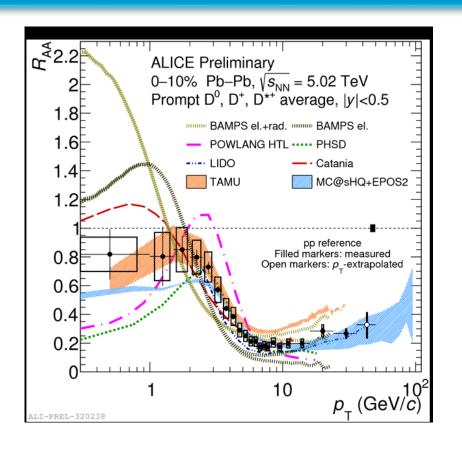
PRC 96 (2017) 054901

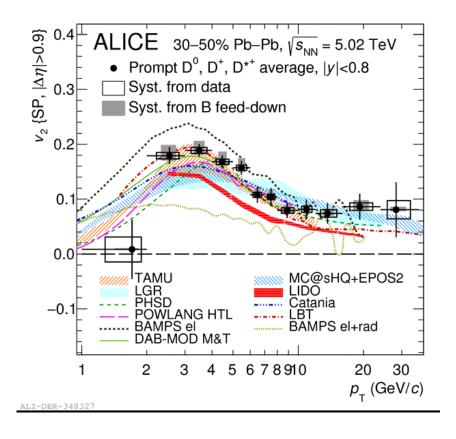

Catania: EPJC 78 (2018) 348

 \square Λ_c^+/D^0 ratio: hint of enhanced Λ_c^+ production in Pb-Pb collisions compared to pp collisions via quark recombination and radial flow


 \square Models including hadronisation via coalescence (TAMU, Catania) and based on statistical hadronisation (SHM) describe within uncertainties the measured Λ_c^+/D^0 ratio in 0-10% Pb-Pb collisions

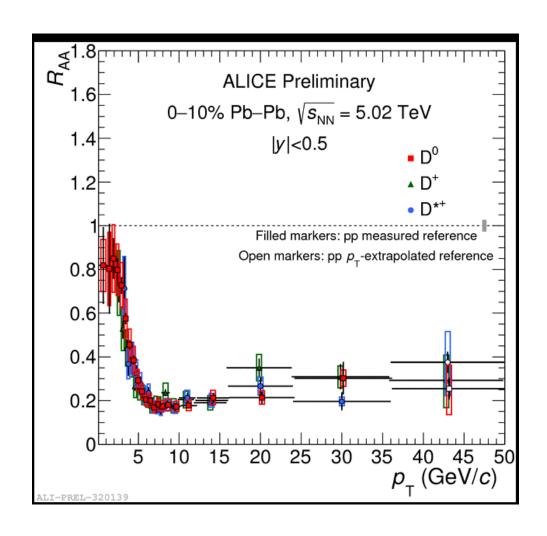
Heavy-flavour decay muons R_{AA} : Pb-Pb vs Xe-Xe collisions

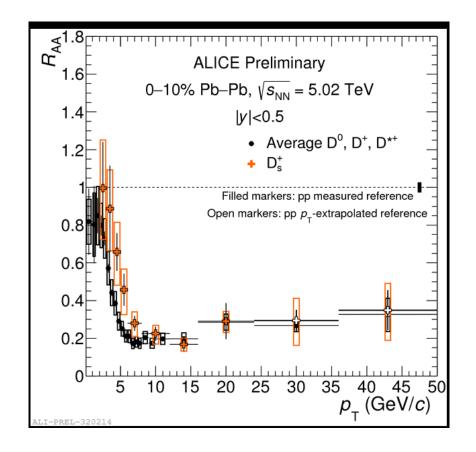

Heavy-flavour hadron decay muons in Pb-Pb: charm vs beauty



- Mass-depend in-medium energy loss → different in-medium energy loss expected for charm and beauty
- MC@sHQ+EPOS2 predictions with different energy loss scenarios in fair agreement with the measured R_{AA} of muons from both charm- and beauty-hadron decays
- \Box Muons from beauty-hadron decays: dominant source at high $p_{\rm T}$

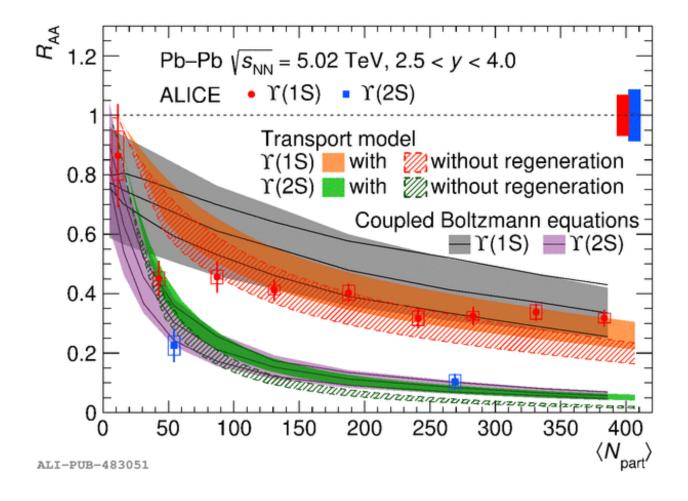
Model comparisons

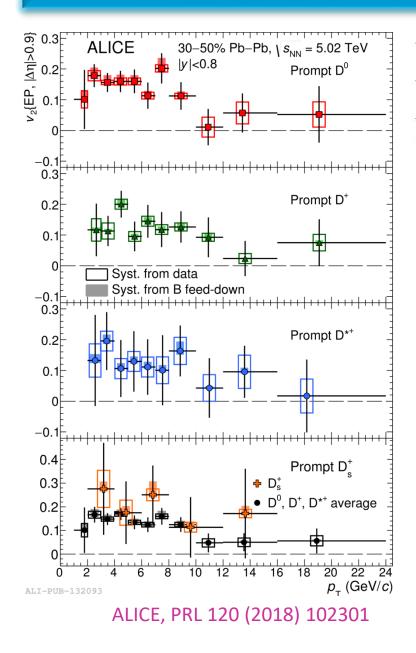


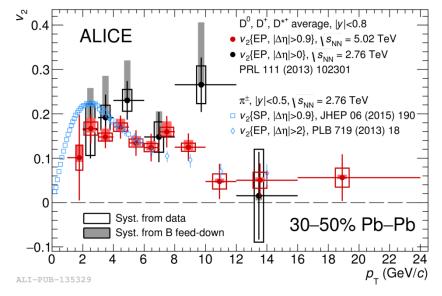


 \square Simultaneous description of R_{AA} and v_2 over a wide p_T interval is challenging: improved precision of the measurements can allow us to set important constraints to model calculations

D-meson R_{AA} in Pb-Pb collisions

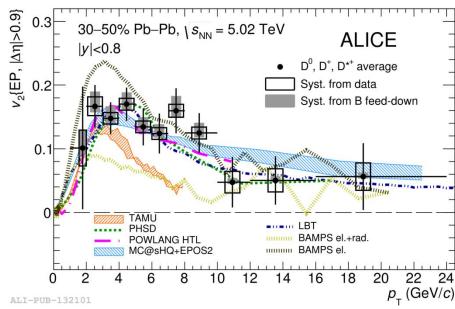

Yield ratios


Bottomonia: $\Upsilon(1S)$ and $\Upsilon(2S)$ R_{AA} in Pb-Pb collisions



Elliptic flow (v_2) in Pb-Pb collisions

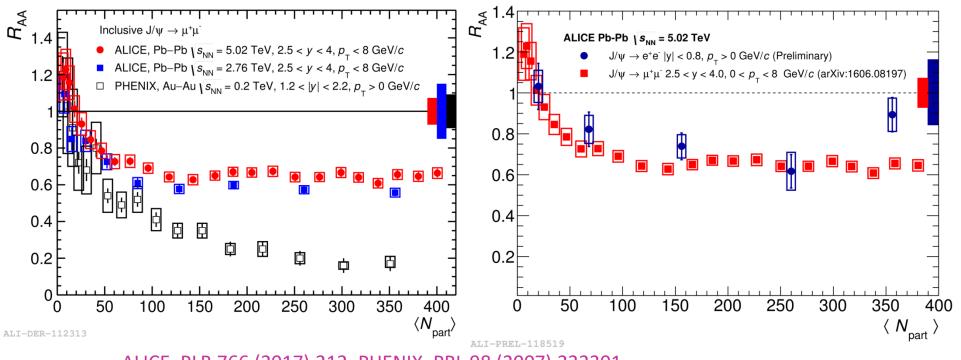
 $\frac{2\pi}{N} \frac{\mathrm{d}N}{\mathrm{d}\varphi} = 1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\varphi - \Psi_n)]$



- ☐ First $D_s^+ v_2$ measurement, similar as non-strange $D_s^+ v_2$
- □ Positive D-meson v_2 in $2 < p_T < 10$ GeV/c (hint of a larger charged-pion v_2 for $p_T < 4$ GeV/c)
 - Participation of charm quarks in the collective expansion of the system

Comparison with models

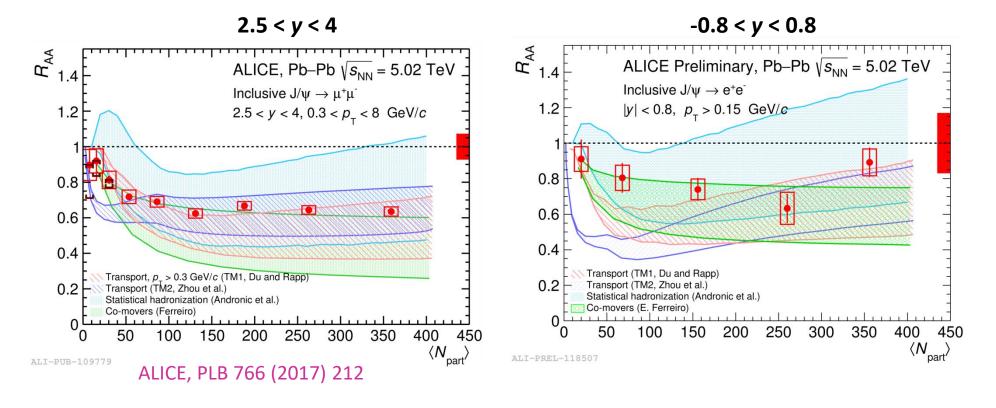
ALICE, arXiv:1804:09083


ALICE, PRL 120 (2018) 102301

- □ Models with diffusion coefficient 1.5 < $2\pi D_s(T)$ < 7 at $T = T_c$ with a thermalisation time $\tau_{charm} = 3-14$ fm/c describes better the v_2 measurement
- \square Simultaneous description of R_{AA} and v_2 over a wide p_T interval is challenging: improved precision of the measurements can allow us to set important constraints to models

POWLAND: Eur. Phys. J. C75 (2015) 121; MC@sHQ: PRC 89 (2014) 014905; LBT: PLB 777 (2018) 255; BAMPS: J. Phys. G 42 (2015) 115106; PHSD: PRC 93 (2016) 034906

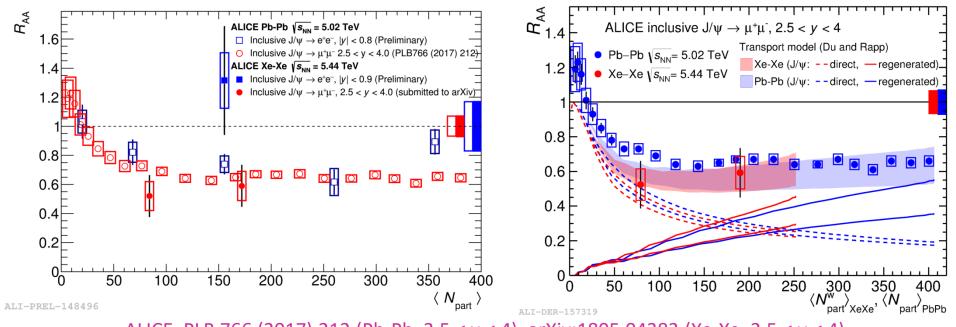
$J/\psi R_{AA}$ in Pb-Pb collisions at 5.02 TeV



ALICE, PLB 766 (2017) 212, PHENIX, PRL 98 (2007) 232301

- □ Significant J/ ψ suppression at $\sqrt{s_{NN}} = 2.76$ TeV with a saturation for $\langle N_{part} \rangle > 50$
- ☐ Different trends observed at RHIC
- Measured suppression at 5.02 TeV confirms the observations at 2.76 TeV with an increased precision
- $lue{}$ Comparable J/ ψ suppression at forward and mid rapidity with a hint of less suppression at mid rapidity in the most central collisions

$J/\psi R_{AA}$ in Pb-Pb collisions at 5.02 TeV

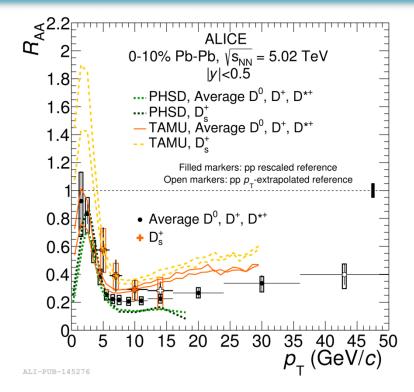


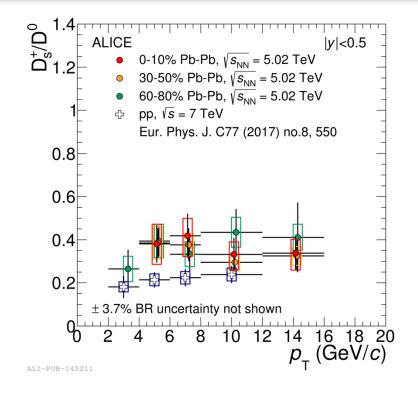
- ☐ Experimental observations interpreted as interplay between suppression and regeneration
- ☐ Data described by all models within their rather large uncertainties
 - ➤ Main uncertainty sources: charm cross section and cold nuclear matter effects on quarkonium production

$J/\psi R_{AA}$ in Xe-Xe and Pb-Pb collisions

ALICE, PLB 766 (2017) 212 (Pb-Pb, 2.5 < y < 4), arXiv:1805.04383 (Xe-Xe, 2.5 < y < 4)

Forward rapidity


- □ R_{AA} in Xe-Xe collisions in agreement, within large uncertainties, with the Pb-Pb results and described by a transport model
- □ Similar relative contribution of suppression and regeneration processes at similar $\langle N_{part} \rangle$


Mid rapidity

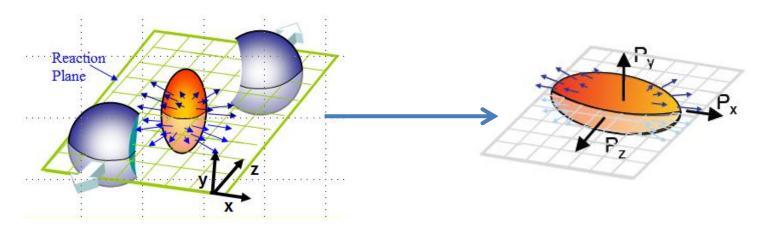
 \square R_{AA} in Xe-Xe collisions consistent with unity within large uncertainties

Strange and non-strange D-meson R_{AA} in Pb-Pb collisions at 5.02 TeV

ALICE, arXiv:1804.09083

PHSD: PRC 93 (2016) 034906, TAMU: PLB 735 (2014) 445

- ☐ Hint of enhanced D+s production compared to non-strange D mesons in central Pb-Pb collisions at 5.02 TeV as expected from models
 - ➤ Hadronisation via coalescence in a strangeness-rich environment?
- □ No significant dependence of D⁺_s/D⁰ ratio on collision centrality within uncertainties
 - > Expected within a pure coalescence scenario

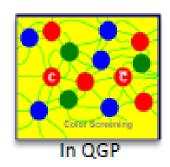

Observables

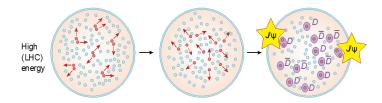
 \square Nuclear modification factor R_{AA}

$$R_{\rm AA}(p_{\rm T}) = 1/\langle T_{\rm AA} \rangle \times \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}} \sim \frac{{
m QCD~medium}}{{
m QCD~vacuum}}$$

☐ Elliptic flow v₂

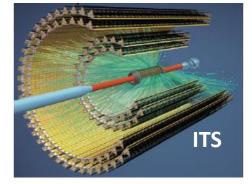
$$\frac{2\pi}{N} \frac{\mathrm{d}N}{\mathrm{d}\varphi} = 1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\varphi - \Psi_n)] \qquad v_n = \langle \cos[n(\varphi - \Psi_n)] \rangle$$

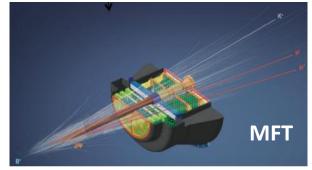

Quarkonium production


- ☐ Colour screening in the QGP
 - → quarkonium suppression

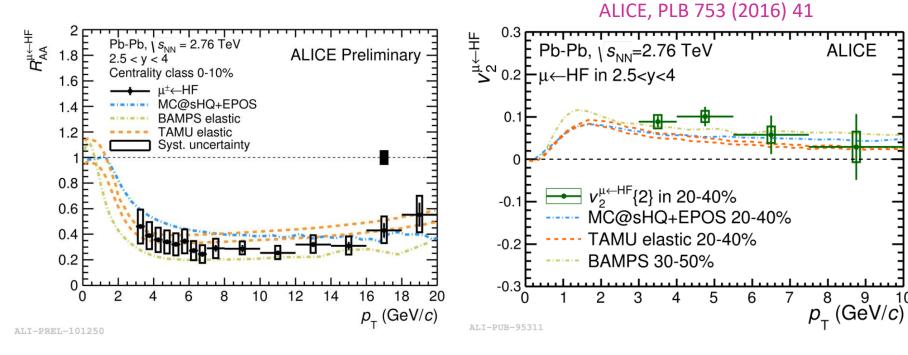
[T. Matsui & H. Satz, PLB 178 (1986) 416]

Central A-A collisions	SPS	RHIC	LHC	LHC
	20 GeV	0.2 TeV	2.76 TeV	5.02 TeV
N _{ccbar} /event	~0.2	~10	~85	~115


☐ Abundant production of cc at the LHC may lead to a recombination mechanism at hadronization (statistical approach) or in the QGP (kinetic approach) which enhances charmonium production

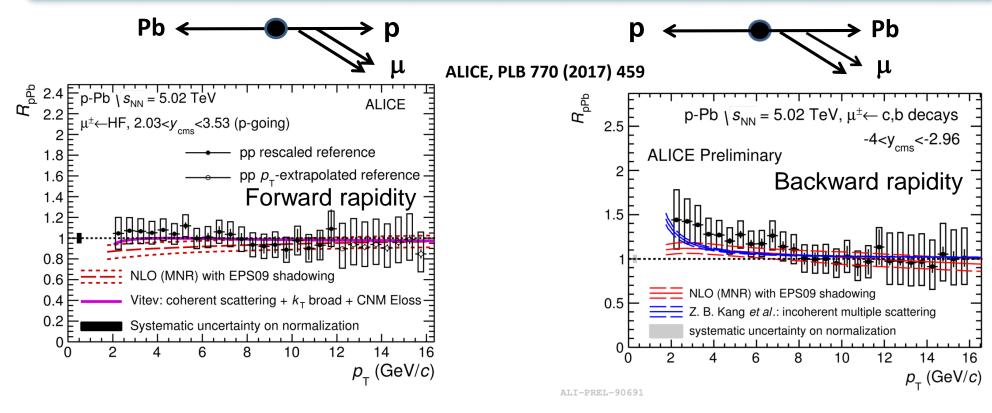

[P. Braun-Munzinger & J. Stachel, PLB 490 (2000) 196, B. Thews et al., PRC 63 (2001) 054905]

ALICE upgrade



- ☐ Major upgrade currently in preparation for LHC Run3 (2021-2023)
 - Ongoing R&D, construction and installation during the second Long Shutdown
 - New conditions with Run 3: Pb-Pb interaction may reach 50kHz (now ~ 8 kHz)
- ☐ Goals of ALICE Run 3:
 - High precision measurements of rare probes with main focus on the low p_T region \rightarrow x 100 larger minimum-bias sample compared to Run 2 (~10¹¹ events)
 - Increase readout rate to 50 kHz, presently limited to ~1 kHz
 - Improvement of pointing resolution at both central and forward rapidity
- □ New Inner Tracking System (ITS)
 - Improved pointing resolution, reduced material budget, faster readout
- New Forward Muon Tracker (MFT)
 - New Silicon tracker, heavy-flavour vertices also at forward rapidity
- New TPC readout chambers based on GEM
- □ Upgraded readout for many detectors,
 Integrated Online-Offline (O²) system,
 New Fast Integration Trigger detector (FIT)

Muons from heavy-flavour hadron decays at $\sqrt{s_{NN}}$ = 2.76 TeV: comparison with models



- \square R_{AA} in central collisions and v_2 in semi-central collisions reasonably described by models including energy loss in the QGP but not in details
 - Further constraints to models: comparison with Run 2 measurements

MC@ sHQ+EPOS, Coll + Rad (LPM): Phys. Rev. C 89 (2014) 014905; BAMPS: Phys. Lett. B 717 (2012) 430; TAMU: Phys. Lett. B 735 (2014) 445

Heavy-flavour decay muons: R_{pPb} vs p_T

- \square R_{pPb} at forward rapidity is consistent with unity and, at backward rapidity is slightly larger than unity in $2 < p_T < 4 \text{ GeV}/c$ and close to unity at higher p_T
- Cold nuclear matter effects are small
- R_{pPb} described by perturbative QCD calculations implementing cold nuclear matter effects

pQCD NLO (MNR): Nucl. Phys. B 373 (1992) 295, EPS09: K. J. Eskola et al., JHEP 04 (2009) 065 R. Sharma et al., Phys. Rev. C 80 (2009) 054902; Z.B. Kang et al., Phys. Lett. B 740 (2015) 23