

SPECIFICITIES OF THE MEDITERRANEAN SEA

Location (N.Hemisphere) complementary to IceCube coverage of Galactic Centre

Medium (sea water)

high-energy astronomy

low light scattering \rightarrow good ang. resolution bioluminescence & 40 K backgrounds

- 1. Neutrino interacts
- 2. Produces charged particles
- 3. Emit Cherenkov light
- 4. Detected by 3D array of PMTs

Track events

$$\nu_{\mu} + N \rightarrow \mu + X$$

- fit line \rightarrow direction
- amount of light \rightarrow energy

- 1. Neutrino interacts
- 2. Produces charged particles
- 3. Emit Cherenkov light
- 4. Detected by 3D array of PMTs

SHOWER EVENTS

 $u_e + \nu_{ au}$ charged current interactions $u_e + \nu_{\mu} + \nu_{ au}$ neutral current interations

v e

Detector acceptance depends on energy:

 $\mbox{lower energies} \rightarrow \mbox{less light} \rightarrow \mbox{needs denser PMT layout} \\ \mbox{higher energies} \rightarrow \mbox{more absorbed by Earth} \rightarrow \mbox{can only see downgoing } \nu \mbox{s}$

- In operation since 2006 (completed in 2008)
- Off the coast of Toulon
- 12 lines
- 25 storeys/line
- 3 PMTs / storey

Total instrumented volume:
10 Mt

ANTARES results

ANTARES receives alerts:

- transient events reported in GCN
- follow-ups issued in few days (IceCube, GW...) (+ offline analyses)

ANTARES sends alerts:

- alert ready in $\sim 5\,\text{s}$
- median angular resolution: $\sim 0.3^{\circ}$
- triggers: single high-energy $\nu\text{, multiplets}$

- alerts sent to AMON and partners

KM3NeT will join the real-time efforts in 2022

- Data sample: 2007-2018
- All-sky and all-flavours search
- 1.8σ excess

	Obs.	Exp.
Tracks Showers	27 23	19.9 16.2
Total	50	36.1 ± 8.7

Best fit

- $\Phi_0(100\,\text{TeV}) = (1.5 \pm 1.0) \cdot 10^{-18}\,\text{GeV}^{-1}\,\text{cm}^{-2}\,\text{s}^{-1}\,\text{sr}^{-1}$
- spectral index $\Gamma = 2.3 \pm 0.4$

• Data sample: 2007-2017

• Looking for point sources in the full sky, with $1^{\circ} \times 1^{\circ}$ pixels

Most significant cluster

 $RA=39.6^{\circ},~\delta=11.1^{\circ}$ within 1° of J0242+1101 pre-trial = 4.3 σ (48% post-trial)

2nd most significant cluster

RA = 343.8°, δ = 23.5° close to blazar MG3 J225517+2409 pre-trial = 4.2 σ

Analyses using known sources

Candidate-list search

121 sources (potential neutrino emitters)

Mild excess for TXS 0506+056, J0242+1101...

Catalog-based stacking

Catalog	p(pre)	p(post)	Φ _{90%}
Fermi 3LAC (All Blazars)	0.19	0.83	4.3
Fermi 3LAC (FSRQ)	0.57	0.97	2.2
Fermi 3LAC (BL Lacs)	0.09	0.64	4.8
Radio Galaxies	0.0048	0.10	4.2
Star-Forming Galaxies	0.37	0.93	2.0
Obscured AGN	0.73	0.98	1.5
IC High Energy Tracks	0.05	0.49	5.2

Blazar MG3 J225517+2409

- Also second all-sky hotspot
- 5 ANTARES tracks + blazar \rightarrow 2.3 σ
- 1 IC tracks + blazar $\rightarrow 1.9\sigma$

Radio galaxy 3C 403

- Pre-trial = 3.7σ
- Post-trial = 2.5σ

Counting neutrino-blazar pairs in cones of variable size.

Stay tuned for final results

Gamma-ray bursts

- ANTARES data sample: 2007-2017
- GRB catalog: 784 GRBs
- No coincidence → flux upper limits

GRBs contribute <10% of astro flux @ 100 TeV

Gravitational waves

- GW = Merger of compact objects (black holes / neutron stars)
- Search for ν in time ($\pm 500\,\mathrm{s}$) and spatial (compatible with GW localisation) coincidence
- Offline studies for O2 (2017)
 + online follow-up for O3 (2019-2020)
- No coincidence → upper limits

Ongoing analysis of O3 (GWTC-2 catalog). It will include stacking

Sensitivity to astrophysical neutrinos

Phys.G 43 (2016) 8, 084001Astropart.Phys. 111 (2019) 100-110

Diffuse flux

Point-source searches

Detect IceCube astro flux at 5σ in 6 months

Full-sky coverage with KM3NeT

From ANTARES to KM3NeT:

- increased effective area: sensitivity to lower flux
- improved angular resolution: better pointing for subsequent follow-ups

Alerts expected to be sent starting in 2022

PMTs above the background

(radioactive decays / muons)

Coincident hits in

(radioactive decays / muons

- 5σ for Milky Way (up to SMC @ 60 kpc for optimistic models)
- Time with $\mathcal{O}(\mathsf{ms})$ precision $0 \lesssim 6\,\mathsf{kpc}$ (for triangulation)
- SASI measurements $0 \le 3 4 \,\mathrm{kpc}$

ORCA

Autumn data currently taking deployed strings (strings (New

See talk by Jerzy Manczak

In \sim 19 days of ARCA6 data:

- observed = 15 upgoing events
- expected = 4 atmospheric ν + 7 atmospheric μ

Figure: One string ready to be deployed

More details on **y**@km3net and on KM3NeT website

Next operations

- Scheduled for Spring and Autumn 2022:
 - new strings
 - + one junction box
 - + calibration unit
- ... up to the 230 strings final configuration

Figure: Junction box

Figure: Calibration unit

- Several Cherenkov telescopes in the Mediterranean Sea:
 - ANTARES (since 2006), 12 lines, 10 Mt
 - KM3NeT/ORCA (under construction), 115 strings, 7 Mt, $E_{\nu} \sim$ GeV-TeV \leftarrow see Jerzy's talk
 - KM3NeT/ARCA (under construction), 2×115 strings, 1 Gt, focus on higher energies
- A plethora of results with ANTARES:
 - Mild excess for the diffuse astrophysical flux
 - Some interesting sources...
 - Broad multi-messenger program
- Bright future ahead with KM3NeT:
 - First strings are taking good-quality data and good data/MC agreement
 - New strings to be deployed in the coming years
 - Promising sensitivities over large energy spectrum (MeV \rightarrow EeV)

Backups

56 institutes17 countries4 continents

https://www.km3net.org/about-km3net/collaboration/members/

One building block

115 strings

18 DOMs / string

31 PMTs / DOM

Total of $64k \times 3$ " PMTs

	ORCA	ARCA
	1 building block	2 building blocks
String spacing	20 m	90 m
DOM spacing	9 m	36 m
Depth	2470 m	3500 m
Instrumented mass	\sim 7 Mt	$\sim 2\times 0.5\text{Gt}$

Dark matter searches

- Relic WIMPs gravitationally bound in the center of an astrophysical object (Galactic Center, Sun core, Earth...)
- Search for an excess of ν_{μ} due to WIMP annihilation $(\chi + \chi \to b\bar{b}, W^+W^-, \tau^+\tau^-, \mu^+\mu^-, \nu_{\mu}\bar{\nu}_{\mu}, \langle E_{\nu} \rangle \sim M_{\chi}/3)$

Baikal-GVD follow-up

- 38 alerts sent to Baikal-GVD
- 32 follow-ups
- 3 with GVD cascades in time $(\pm 1\,\mathrm{d})$ and spatial $(<5^\circ)$ coincidence

 ~ 0.1 background events per cluster per day

- Bioluminescence Flashes: arXiv:2107.08063
- Sperm whale long-range echolocation: Sci. Rep. 7 (2017) 45517
- High-frequency internal wave motions: Ocean Dynamics, April 2014, 64, 4, 507-517
- REINFORCE European project, "Deep Sea Hunters" program