The final result of GERDA

Christoph Wiesinger (Tun, Julyser) for the GERDA collaboration, 19th October 2021

Experimental approach

HPGe detectors enriched in ⁷⁶Ge

- energy resolution $\sigma(E)/E < 0.1\%$ at $Q_{BB} = 2039 \text{ keV}$
- **high-purity** material -> no intrinsic background [Astropart.Phys. 91 (2017) 15-21]
- $high \ stopping \ power \ \ -> \ topology \ information$

Topology discrimination

differentiate **point-like** $\beta\beta$ topology from:

multi-detector
interactions

multi-site/surface interactions

interactions with partial energy depositions

LNGS×

GERDA Phase II

• **35.6 kg** (later **44.2 kg**) of **enriched HPGe** detectors in ultra-low background **LAr** environment

[Eur.Phys.J. C78 (2018) no.5, 388]

• two (later three) detector types

- hybrid **scintillation** light read-out with **PMTs** and WLS fibers/**SiPMs**
- **low activity** materials and little passive mass

GERDA Phase II

• **35.6 kg** (later **44.2 kg**) of **enriched HPGe** detectors in ultra-low background **LAr** environment

[Eur.Phys.J. C78 (2018) no.5, 388]

• two (later three) detector types

- hybrid **scintillation** light read-out with **PMTs** and WLS fibers/**SiPMs**
- **low activity** materials and little passive mass

- 4 yr operation, with about 90% duty cycle (incl. upgrade works)
- **103.7 kg yr** of data selected for analysis

largest 76Ge exposure ever taken

Phase II spectrum

• combined Bayesian fit to multiple datasets with Monte Carlo *pdf*s for **nearby components**

screening measurements as priors

- two-sided **mono-parametric** A/E cut for **BEGe / ICPC** detectors [Budjas et al., JINST 4 (2009) P10007]
- artificial neural network analysis plus consecutive risetime cut for coaxial detectors [Eur. Phys. J. C73 (2013) 2583]
- cut definition / training with 228Th calibration data -> 208Tl DEP is signal proxy
- $0\nu\beta\beta$ signal efficiency ~90% (~70% for coaxials)

Liquid argon veto

— HPGe

- channel-wise (anti-)coincidence condition (PMTs/SiPMs)
- triplet lifetime ~1 µs
- **sub-PE threshold** over characteristic scintillation **emission time**
- $0\nu\beta\beta$ signal efficiency (1 random coincidence rate) > 97%

39 Ar, dark rate

Final GERDA result

- background index 5.2+1.6 13 · 10-4 cts/(keV kg yr), energy resolution ~3 keV (FWHM) per detector/period
- combined (data partitions, Phase I) **unbinned maximum likelihood fit**[Nature 544 (2017) 47]

 Gaussian signal on flat background
- Frequentist: $N^{0\nu} = 0$ best fit, $T_{1/2} > 1.8 \cdot 10^{26}$ yr (median sensitivity -"-) at 90% C.L., Bayesian: flat prior on rate, $T_{1/2} > 1.4 \cdot 10^{26}$ yr at 90% C.I. $> 2.3 \cdot 10^{26}$ yr for flat prior on m_{bh}

Mass constraints

three flavour oscillation parameters from [Esteban et al., JHEP 09 (2020) 178]

- given "standard" assumptions 0vββ decay searches constrain **neutrino mass**
- interplay with cosmology / direct mass measurements $\rightarrow m_{light} < [0.1,0.5] eV$, sum < [0.2,1.5] eV, $m_k < [0.1,0.5] eV$ [Science 365 (2019) 1445]

Conclusions

- ullet GERDA has finished successfully, **no signal found** \rightarrow first experiment with sensitivity beyond 10^{26} yr
- first deployment of **enriched ICPC detectors** [Eur.Phys.J.C 81 (2021) 505]
- further results ($2\nu\beta\beta$ decay, exotics) to come

GERmanium Detector Array - GERDA

Backup

Nuclear physics aspects

• SM-allowed **2νββ decay** observed in **11** out of 35 naturally abundant **even-even nuclei**

[Tretyak, Zdesenko, Atom.Data Nucl.Data Tabl. 80 (2002) 83-116]

• **0νββ decay** rate defined by interplay of **BSM physics** and **nuclear structure** details

nuclear model dependence, matrix element uncertainty

[Engel, Menéndez, Rept.Prog.Phys. 80 (2017) 4, 046301]

ab initio calculations may solve quenching issue

[Yao et al. Phys.Rev.Lett. 124 (2020) 23, 232501]

there is no **super-isotope**

like [Robertson, Mod.Phys.Lett.A 28 (2013) 1350021]

Long-term stability of the veto

cryostat

GERDA result comparison

