

Indirect dark matter searches with the MAGIC telescopes

Daniel Kerszberg (IFAE-BIST), for the MAGIC collaboration

32nd Rencontres de Blois, 17-22 October 2021

Blois, France

The MAGIC experiment

- Two Imaging Atmospheric Cherenkov Telescopes located in the Observatory Roque del Muchachos at La Palma, Canary Islands (Northern hemisphere):
 - Altitude: ~ 2200 m asl
 - Detects gamma rays
 between ~20 GeV and
 ~100 TeV
 - Field of view of ~3.5°
 - Angular resolution ~ 0.1°
 (energy dependent)

See also C. Nigro's talk on Thursday!

Atmospheric showers

IATCs are designed to detect gamma rays

Indirect dark matter search with gamma-rays

- Gamma-rays are not deflected by magnetic fields and trace back to original source
 - → Critical to identify the (physical) origin of the signal and study DM spatial distribution
- Classical targets for gamma-ray experiments include among others:
 - The Galactic Center (high DM content with high uncertainties)
 - Dwarf spheroidal galaxies (lower DM content with smaller uncertainties)
 - Galaxy clusters
- Looking for Dark Matter particles self-annihilating (or decaying) into Standard Model particles
 - → Weakly Interacting Massive Particles (WIMP) scenario

Expected Dark Matter flux

$$\frac{d\Phi(\Delta\Omega)}{dE} = \frac{1}{4\pi} \frac{\langle \sigma_{\rm ann} v \rangle}{2m_{\rm DM}^2} \frac{dN}{dE} \times \int_{\Delta\Omega} d\Omega' \int_{\rm l.o.s.} dl \rho^2(l, \Omega')$$

Expected Dark Matter flux

$$\frac{d\Phi(\Delta\Omega)}{dE} = \frac{1}{4\pi} \frac{\langle \sigma_{\rm ann} v \rangle}{2m_{\rm DM}^2} \frac{dN}{dE} \right\} \int_{\Delta\Omega} d\Omega' \int_{\rm l.o.s.} dl \rho^2(l,\Omega')$$

Expected Dark Matter flux

Examples of DM content profiles for the Galactic Centre

State of the art likelihood analysis

$$\mathcal{L}_{i}(\langle \sigma v \rangle; \boldsymbol{\nu}_{i} \mid \boldsymbol{\mathcal{D}}_{i}) = \mathcal{L}_{i}(\langle \sigma v \rangle; \{b_{ij}\}_{j=1,...,N_{\text{tons}}}, J, \tau_{i} \mid (N_{\text{ON},ij}, N_{\text{OFF},ij})_{j=1,...,N_{\text{bins}}})$$

$$= \prod_{j=1}^{N_{\text{bins}}} \left[\frac{(g_{ij}(\langle \sigma v \rangle) + b_{ij})^{N_{\text{ON},ij}}}{N_{\text{ON},ij}!} e^{-(g_{ij}(\langle \sigma v \rangle) + b_{ij})} \times \frac{(\tau_{i}b_{ij})^{N_{\text{OFF},ij}}}{N_{\text{OFF},ij}!} e^{-(\tau_{i}b_{ij})} \right] \times \mathcal{T}(\tau_{i} \mid \tau_{\text{obs},i}, \sigma_{\tau,i}) \times \mathcal{J}(J \mid J_{\text{obs}}, \sigma_{\log_{10}} J) ,$$

Binned (in energy) likelihood

- → Poisson PDF for the ON region (where signal is expected)
- → Poisson PDF for the OFF region (where background is estimated)

State of the art likelihood analysis

$$\mathcal{L}_{i}(\langle \sigma v \rangle; \boldsymbol{\nu}_{i} \mid \boldsymbol{\mathcal{D}}_{i}) = \mathcal{L}_{i}(\langle \sigma v \rangle; \{b_{ij}\}_{j=1,\dots,N_{\text{bins}}}, J, \tau_{i} \mid (N_{\text{ON},ij}, N_{\text{OFF},ij})_{j=1,\dots,N_{\text{bins}}})$$

$$= \prod_{j=1}^{N_{\text{bins}}} \left[\frac{(g_{ij}(\langle \sigma v \rangle) + b_{ij})^{N_{\text{ON},ij}}}{N_{\text{ON},ij}!} e^{-(g_{ij}(\langle \sigma v \rangle) + b_{ij})} \times \frac{(\tau_{i}b_{ij})^{N_{\text{OFF},ij}}}{N_{\text{OFF},ij}!} e^{-(\tau_{i}b_{ij})} \right] \times \mathcal{T}(\tau_{i} \mid \tau_{\text{obs},i}, \sigma_{\tau,i}) \times \mathcal{T}(J \mid J_{\text{obs}}, \sigma_{\log_{10}} J) \quad ,$$

PDF for the ON/OFF normalization factor

- → taken into account as nuisance parameter in the likelihood
- → allow proper treatment of instrumental systematic errors, important in the case of Cherenkov telescopes
- → no overestimation of the limits

State of the art likelihood analysis

$$\mathcal{L}_{i}(\langle \sigma v \rangle; \boldsymbol{\nu}_{i} | \boldsymbol{\mathcal{D}}_{i}) = \mathcal{L}_{i}(\langle \sigma v \rangle; \{b_{ij}\}_{j=1,\dots,N_{\text{bins}}}, J, \tau_{i} | (N_{\text{ON},ij}, N_{\text{OFF},ij})_{j=1,\dots,N_{\text{bins}}})$$

$$= \prod_{j=1}^{N_{\text{bins}}} \left[\frac{(g_{ij}(\langle \sigma v \rangle) + b_{ij})^{N_{\text{ON},ij}}}{N_{\text{ON},ij}!} e^{-(g_{ij}(\langle \sigma v \rangle) + b_{ij})} \times \frac{(\tau_{i}b_{ij})^{N_{\text{OFF},ij}}}{N_{\text{OFF},ij}!} e^{-(\tau_{i}b_{ij})} \right] \times \mathcal{T}(\tau_{i} | \tau_{\text{obs},i}, \sigma_{\tau,i}) \times \mathcal{J}(J | J_{\text{obs}}, \sigma_{\log_{10}} J) ,$$

J-factor (ie Dark matter content) PDF

- → taken into account as nuisance parameter in the likelihood
- → no overestimation of the limits

Observation of dSphs with MAGIC

Combination of data from multiple dSphs observations

- maximize the sensitivity to a potential DM signal by increasing the statistics
- 4 dSphs observed for a total of **354.3** hours

Target	$egin{aligned} \log_{10} J(heta_{ m max}) \ [{ m GeV^2cm^{-5}}] \end{aligned}$	$ heta_{ m max} \ [m deg]$	$ heta_{0.5} \ [\mathrm{deg}]$	$T_{ m eff} \ [{ m h}]$	Year
Coma Berenices	$19.02^{+0.37}_{-0.41}$	0.31	$0.16^{+0.02}_{-0.05}$	49.5	2019
Draco	$19.05^{+0.22}_{-0.21}$	1.30	$0.40^{+0.16}_{-0.15}$	52.1	2018
Ursa Major II	$19.42^{+0.44}_{-0.42}$	0.53	$0.24^{+0.06}_{-0.11}$	94.8	2016-2017
Segue 1	$19.36^{+0.32}_{-0.35}$	0.35	$0.13^{+0.05}_{-0.07}$	157.9	2011-2013

Observation of dSphs with MAGIC

Combined limits yield an improvement by a factor up to 40-50%

Observation of dSphs with MAGIC

- Largest data set from Cherenkov telescopes
- Limits from various gamma-ray experiment nicely complement each other

Combined limits from 5 experiments

Combined limits are up to a factor 2-3 more constraining!

The Galactic Centre as seen by MAGIC

- Optimal observation conditions (ie low zenith) is from the Southern hemisphere
- But MAGIC is located in the Northen hemisphere, so Galactic Centre can only be seen from a zenith of \sim 50 degrees
 - → larger effective area but higher energy threshold

The Galactic Centre as seen by MAGIC

- Optimal observation conditions (ie low zenith) is from the Southern hemisphere
- But MAGIC is located in the Northen hemisphere, so Galactic Centre can only be seen from a zenith of \sim 50 degrees
 - → larger effective area but higher energy threshold

The Galactic Centre as seen by MAGIC

- Optimal observation conditions (ie low zenith) is from the Southern hemisphere
- But MAGIC is located in the Northen hemisphere, so Galactic Centre can only be seen from a zenith of \sim 50 degrees
 - → larger effective area but higher energy threshold

Unbinned likelihood analysis

$$\begin{split} \mathcal{L}_{i}(g_{i}; \nu_{i} \mid \mathcal{D}_{i}) &= \mathcal{L}_{i}(g_{i}; b_{i}, \tau_{i} \mid \{E_{j}'\}_{j=1,...,N_{\text{ON},i}}, N_{\text{ON},i}) \\ &= \frac{(g_{i} + \tau_{i}b_{i})^{N_{\text{ON},i}}}{N_{\text{ON},i}!} e^{-(g_{i} + \tau_{i}b_{i})} \times \frac{1}{g_{i} + \tau_{i}b_{i}} \prod_{j=1}^{N_{\text{ON}}} (g_{i}f_{g}(E_{j}') + \tau_{i}b_{i}f_{b}(E_{j}')) \end{split}$$

$$\times \mathcal{T}(\tau_i | \tau_{\text{obs},i}, \sigma_{\tau,i}).$$

- N_ON: observed number of events
- Index i run over different data samples
- G: estimated number of signal events
- B: estimated number of background events
- Tau: normalization factor for background model
- f_g: line signal PDF
- f_b: background PDF

Search for line-like signals in the Galactic Centre

- Results from ~204 hours of data
- No significant excess detected

Search for line-like signals in the Galactic Centre

- Results from ~204 hours of data
- Limits for cuspy profile comparable to H.E.S.S. and limits for core profile comparable to limits from dSphs

Conclusion

- Gamma-ray experiments can probe very efficiently the GeV to multi-TeV DM mass range
- Robust results can be achieved with "clean" targets such as dSphs
 - → large dataset of 4 dSphs and a total of ~354 hours of observations
 - → most stringent limits from dSphs in the TeV regime
 - → results nicely complements with other gamma-ray experiments
- Analyses are now both highly sophisticated and highly standardized
 - → allows us to perform multi-instruments and multi-targets analysis
 - → combined limits from Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS range from 5 GeV to 100 TeV and improve individual limits up to a factor 2 to 3
- Observations of the Galactic Centre from the MAGIC site are done at large zenith angle
 - → larger effective area but higher energy threshold
 - → search of TeV DM line-like signals is boosted!
 - → analysis technique allow to constrain both cuspy and core profiles