DARKSIDE-20K AND THE FUTURE LIQUID ARGON DARK MATTER PROGRAM

MASAYUKI WADA

AstroCeNT, Warsaw

19/10/2021

32ND RENCONTRES DE BLOIS

DARKSIDE PROGRAM

- Direct detection search for WIMP dark matter
- Based on a two-phase argon time projection chamber (TPC)
- Design philosophy based on having very low background levels that can be further reduced through active suppression, for background-free operation from both neutrons and β/γ's

DarkSide-10

DarkSide-50

and **DarkSide-LowMass** for low-mass dark matter searches

FEATURES OF NOBLE LIQUID DETECTORS

- Dense and easy to purify (good scalability, advantage over gaseous and solid target)
- \blacktriangleright High scintillation & ionization (low energy threshold, not low enough to search < 1 GeV/c² DM)
- Transparent to own scintillation

For TPC

- High electron mobility and low diffusion
- Amplification (electroluminescence gain) for ionization signal
- Discrimination electron/nuclear recoils (ER/NR) via ionization/scintillation ratio

Liquid Xenon

- Denser & Radio pure
- Lower energy threshold
- Higher sensitivity at low mass WIMP

Liquid **Argon**

- lower temperature (Rn removal is easier)
- Stronger ER discrimination via pulse shape
- ▶ Intrinsic ER BG from ³⁹Ar
- Need wavelength shifter

FEATURES OF NOBLE LIQUID DETECTORS

- Dense and easy to purify (good scalability, advantage over gaseous and solid target)
- ▶ High **scintillation** & **ionization** (low energy threshold, not low enough to search < 1 GeV/c² DM)
- Transparent to own scintillation

For TPC

- High electron mobility and low diffusion
- Amplification (electroluminescence gain) for ionization signal
- Discrimination electron/nuclear recoils (ER/NR) via ionization/scintillation ratio

Liquid Xenon

- Denser & Radio pure
- Lower energy threshold
- Higher sensitivity at low mass WIMP

Liquid **Argon**

- lower temperature (Rn removal is easier)
- Stronger ER discrimination via pulse shape
- ▶ Intrinsic ER BG from ³⁹Ar
- Need wavelength shifter

PULSE SHAPE DISCRIMINATION

β & γRejection

Electron and nuclear recoils produce different excitation densities in the argon, leading to different ratios of singlet and triplet excitation states

 τ singlet ~ 7 ns τ triplet ~ 1500 ns

A. Hitachi et al. Phys. Rev. B 27 (1983) 5279

PSD parameter
M. G. Boulay and A. Hime, Astropart. Phys. 25 (2006) 179

F90: Ratio of detected light in the first 90 ns*, compared to the total signal

~ Fraction of singlet states

More for PSD: DEAP-3600, <u>Eur. Phys. J. C 81, 823 (2021)</u>

UNDERGROUND Ar

β & γRejection

- Intrinsic ³⁹Ar radioactivity in **atmospheric argon** is the primary background for argon-based detectors
- > ³⁹Ar activity sets the dark matter detection threshold at low energies (where pulse shape discrimination is less effective)
- 39Ar is a cosmogenic isotope, and the activity in argon from underground sources can be significantly lower compared to atmospheric argon
- We deployed 157kg of underground argon in 2015.

³⁹Ar reduction factor of ~1400!

-

GLOBAL ARGON DARK MATTER COLLABORATION

DEAP-3600

More than 400 scientists from past and present argon-based experiments in a single international argon collaboration: **GADMC**

A sequential, two-steps program:

DarkSide-20k (200 tonne yr fiducial)

DarkSide-50

The goal: explore heavy dark matter to the neutrino floor and beyond with extremely low instrumental background

MiniCLEAN

ArDM

EXTRACTION & ISOTOPE SEPARATION

- Urania (Extraction):
 - Expansion of the argon extraction plant in Cortez, CO, to reach capacity of 330 kg/day of Underground Argon

- Very tall column in the Seruci mine in Sardinia, Italy, for high-volume chemical and isotopic purification of Underground Argon. A factor 10 reduction of ³⁹Ar per pass is expected.
- Other isotope separation for medical scanners, for example, ¹⁷O and ¹⁸O.

ARIA UPDATE

- The demonstrator column (26 m) that consists of three modules was **successfully tested** in July-Oct. 2019 with LN₂.
- The results are in agreement with the expectations and validate the concept and design of the plant.
- April 2021: Successful test installation of the first module (of 24 central ones) in the shaft at Seruci mine.
- Assembly of the final column in the well - 2022.

Prototype ARIA column ~26 m

Test installation of the module

ARGON RADIO-PURITY MEASUREMENT

- **DArT:** a single phase low-background detector to measure the ³⁹Ar depletion factor of different underground argon batches (URANIA+ARIA).
- Cylinder made of 99.99% OFHC Cu, 1.42 kg of LUAr. PMMA support structure with TPB coating. Two 1 cm² SiPMs.
- ▶ To be installed inside the ArDM apparatus (Canfranc Laboratory, Spain) filled with LAr (850 kg AAr) used as active veto.
- Sensitivity to the depletion factor of 1000 with 10% precision in one week run.

DArT was installed at LSC in April 2021 and the following installation in ArDM is foreseen in the beginning of 2022.

DArT SiPM

PHOTO SENSOR

- Custom cryogenic SiPMs developed in collaboration with Fondazione Bruno Kessler (FBK), in Italy.
- Key features
 - Photon detection efficiency (PDE) ~45%
 - Low dark-count rate < 20 cps</p>
 - ▶ Timing resolution ~ 10 ns
- ▶ The 28m² for the TPC (8280 channels) + 3000 channel for Veto detector. Mass production of the raw wafer in LFoundry company and assembly in a dedicated facility at LNGS (NOA).

Single SPADs

 \sim 25-30 µm²

Single SiPM

 $\sim 1 \text{ cm}^2$

Photo Detector Unit (PDU) = matrix of 25 PDMs $25 \times 25 \text{ cm}^2$

Photo Detector Module (PDM)
= matrix of 24 SiPMs, 5 x 5 cm²
Read as a single channel
(largest single SiPM unit ever!)

DARKSIDE-20K DETECTOR

- ▶ DarkSide-20k will be installed underground at the Gran Sasso National laboratories, in Italy.
- ▶ The detector has a nested structure:
 - Sealed acrylic TPC filled with 50 t of UAr
 - Neutron veto
 - Two liquid atmospheric argon buffers
 - Gadolinium loaded acrylic shell between the buffers
- Membrane cryostat like the ProtoDune one

TIME PROJECTION CHAMBER

- Ultra pure acrylic vessel, sealed with the bonding technique
- Octagonal shape
- Cathode and anode coated with new transparent conductor (Clevios) and wavelength shifter
- Grooves with Clevios for field cage (No copper rings)

- Wire grid for extraction and electroluminescence fields
- Sides covered with multilayer polymeric reflector evaporated with wavelength shifter (TPB)
- SiPMs planes external to anode and cathode

CRYOGENIC SYSTEM FOR TPC

- Integrated test of the UAr cryogenics is ongoing at CERN.
- Up to 10 kW (latent heat + heat exchanging) adjustable condenser box.
- 1000 SLM circulation speed with two homemade pumps in parallel.
- The first test was taken in July 2021.
- More tests are planned later this year.

TPC Cryogenic system (test installation) at CERN

VETO DETECTOR

Neutrons elastically scattering from argon nuclei are indistinguishable from WIMPs signals. PSD is useless against neutron events.

Veto Structure

- ▶ 424 panels of acrylic loaded with gadolinium, form a shell around the TPC. Total acrylic thickness: 10 cm.
- ▶ The shell is sandwiched between two atmospheric liquid argon buffers, each ~ 40 cm thick. Both buffers are divided in 8 sectors
- Reflector with WLS on all the surfaces

Veto Working Principle

- Neutrons are moderated in the acrylic shell and then captured by gadolinium.
- 2. Gd emits multiple γ -rays with energy up to 8 MeV.
- 3. γ -rays interact in the liquid argon buffers.
- LAr scintillation light is shifted and detected by ~3000
 SiPM-based photosensors.

PROTOTYPES

- ▶ Two Photo Detector Units (PDUs) were already tested in LN₂ at LNGS & CERN.
- **Proto-0** (*spring 2022*). **Two PDUs** mounted on the Proto-0 TPC **in Naples** for the integration test, the S2 study and the adjustable Gas Pocket tests. From ITO to Clevios polymer.
- Proto-1t (from summer 2022). Tests of the scaled version of DS-20k, PDUs and octagonal acrylic vessel, at CERN.

EXPECTED SENSITIVITY

The sensitivity of DS-20k to spin independent WIMPs for different lengths of runs, with the full exposure and with the fiducial cuts applied, compared to LZ and XENONnT.

The present projection - based on a 10 yr run, giving a full volume exposure of 500 t yr - is $4.6 \times 10^{-48} \, \text{cm}^2$ for 1 TeV/c² WIMP for the 90% C.L. exclusion.

SUMMARY

- Underground Ar has excellent properties suited to WIMP search.
- Projects for scaling up of UAr extraction (URANIA) and purification (ARIA) are well developed.
- > ³⁹Ar depletion factor will be confirmed batch by batch in DArT.
- We are close to finalization of the photosensor array design and starting large scale production.
- The cryogenic system is tested at CERN.
- The TPC and Veto designs are well developed.
- Aim at the better sensitivity than the current generation of WIMP search experiments.

Thank you!

EXPECTED SENSITIVITY

• The 5σ significance of DS-20k to spin independent WIMPs for different lengths of runs, with the full exposure and with the fiducial cuts applied, compared to LZ and XENONnT..

The present projection - based on a 10 yr run, giving a full volume exposure of 500 t yr - is 1.5×10^{-47} cm² for 1 TeV/c² WIMP for the 5σ discovery.

ReD EXPERIMENT

Work on going...

