## Searches for new phenomena in final states with 3rd generation quarks using the ATLAS detector

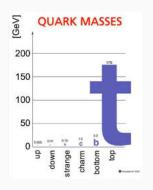
32nd Rencontres de Blois

#### Venugopal Ellajosyula

On behalf of the ATLAS collaboration October 20, 2021

Uppsala University




## Introduction

## Motivation

- Deviations from the SM in lepton flavor universality seen in *B* physics.
- Third generation quarks a good place to look for new physics.
   Higher mass → Stronger coupling with the Higgs boson.
- Decays of top and bottom quarks unique in the SM Bottom quarks decay with a displaced vertex while top quarks decay before hadronisation.

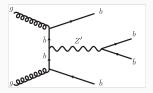
A few of the issues SM cannot explain

- Neutrino masses
- Smallness of the Higgs mass
- Dark Matter



1

#### Contents

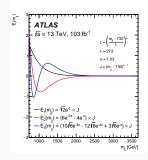

This talk is split into two main parts:

- Lepton flavor universality
  - Search for heavy particles with b-tagged dijet mass distribution and additional b-jets
  - Search for third generation leptoquarks decaying to a top quark and a  $\tau$  lepton
- Higgs fine-tuning
  - Pair-production of vector-like top/bottom quarks
  - Single-production of vector-like top/bottom quark
- Bonus: Search for *tt* resonances (predicted by both classes of models)

This list is not exhaustive. A complete list of analyses with the full Run-2 data collected by ATLAS can be found here.

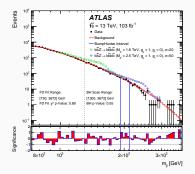
## Lepton flavor universality

## Search for heavy particles with b-tagged dijet mass distribution and additional b-jets arXiv:2108.09059



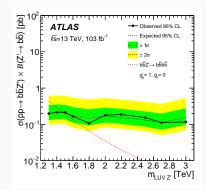

- Search for resonant peaks in b-tagged dijet invariant mass spectrum
- Models explaining LFU anomalies also predict Z' and W' coupling to third generation quarks
- First search in this final state probing masses upto 3.6 TeV
- Main source of background: multijet
- Dedicated trijet trigger used
- Innovative data-driven method to estimate background based on orthonormal functions

## **Background estimation**

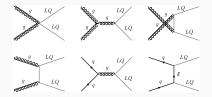

Fit to invariant mass spectrum of the two leading b-tagged jets

- Shape impacted by asymmetric thresholds of trijet triggers
- Functional decomposition used arxiv:1805.04536
- Power law transformation on  $m_{jj}$  $z = \left(\frac{m_{jj} - m_{jj}^0}{\lambda}\right)^{\alpha}$
- Spectrum modelled by  $\Omega(z) = \sum_{n=1}^{N} c_n E_n(z)$
- Truncated series given by the optimized (λ, α, N) and c<sub>n</sub> determines the background estimate



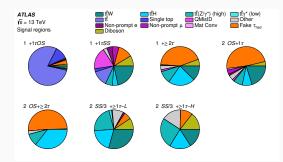

 Pseudodata obtained by scaling events passing pre-selection ith the expected event-level b-tagging selection efficiency of multijet events in dat used to make sure background estimate is adequate, and data is not over-fitted

#### Results



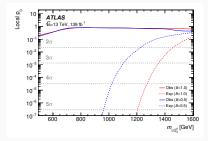

Most significant excess in [1921, 2114] GeV with a p-value of 0.55

## Z' bosons between 1.3 and 1.45 TeV excluded at 95% CL

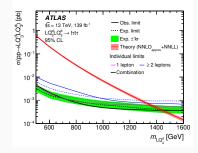


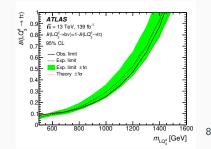

# Search for third generation leptoquarks decaying to a top quark and a $\tau$ lepton arxiv:2101.11582




- Similarities between quark and lepton sectors suggest a **possible** underlying symmetry connecting the two sectors.
- Thus some extensions of SM predict leptoquarks (LQ) with non-zero Baryon and Lepton numbers.
- LQ can have spin-0 or spin-1. Spin-0 LQs couple to quarks and leptons via Yukawa interactions, and can also mediate processes that violate LFU.
- Pair-production of LQ via ggF and  $q \bar{q}$  annihilation considered.
- Corresponding cross-sections are proportional to the mass of the LQ.
- A narrow width of roughly 0.2% assumed.
- The search considers the process  $LQ_3^d L ar Q_3^d o t au t au$

## Backgrounds

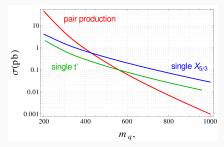




- At least one light lepton, one hadronically decaying  $\tau$ ,  $\geq$  2 jets,  $\geq$  1 *b*-jet.
- Several final states based on multiplicity and flavor of lepton candidate.
- Main sources of background:  $t\bar{t}$  with or without fake lepton or  $\tau$ .
- Masses scanned: 500-1600 GeV
- Simulations with corrections derived from data used for both, reducible and irreducible backgrounds.
- m<sub>eff</sub> used as the discriminating variable in the signal regions.

#### Results



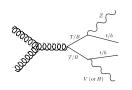
- Sensitivity dominated by  $1\ell + \ge 1\tau$ , with improvements from  $2\ell OS + \ge 1\tau$  and  $2\ell SS/3\ell + \ge 1\tau$
- Expected sensitivity for  $\mathcal{B} = 1$  is  $> 5\sigma$  for m < 1.21 TeV and  $> 3\sigma$  for m < 1.36 TeV.
- Assuming  $\mathcal{B}=1,\;m_{LQ_{\mathbf{3}}^d}<1.43\;\mathrm{TeV}$  excluded at 95% CL.
- Sizeable sensitivity for  $\mathcal{B}=0.5$  as well.





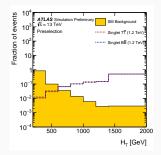

## Higgs fine-tuning

## Composite-Higgs models and vector-like quarks


- The Higgs boson is a composite pseudo-Nambu-Goldstone boson (pNGB) from spontaneous breaking of a global symmetry in a new strongly coupled sector → This protects the Higgs mass.
- Models with partial compositeness predict **new vector-like fermions**.
- Simplest extensions with VLQ (*T* and *B*)
- VLQs assumed to decay via charged and neutral currents to 3rd generation quarks.

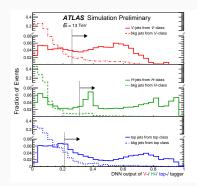


- QCD pair-production: Mass-independent, dominant at low mass
- Single-production: Scales with coupling, model dependent, significant at high mass.


Pair-production of vector-like quarks with at least one leptonically decaying Z boson and a  $3^{rd}$  generation quark

ATLAS-CONF-2021-024

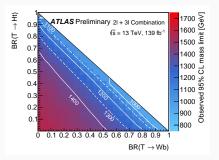


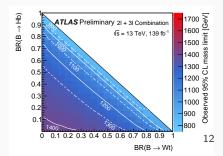

- Optimized for decays to a leptonically-decaying Z boson and a third generation SM quark.
- Events characterized by high-p<sub>T</sub> Z boson, b-tagged jets, high-p<sub>T</sub> large-R jets, exactly 2ℓ or ≥ 3ℓ, boosted W, Z, H, and t.
- Categorization done using a neural-network based boosted object tagger.

## Multi-Class Boosted Object Tagger (MCBOT)



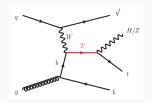
- Based on multi-class DNN trained using RC jets from Z' → tt and W' → WZ simulations, with multijet as background.
- Three signal labels (V, H, top) are obtained by matching the RC jet to the corresponding boson or top quark at generator-level within  $\Delta R < 0.75$ .


- Analysis exploits the high multiplicities of jets, large-R jets, and *b*-jets in addition to requirements on p<sup>Z</sup><sub>T</sub> and H<sub>T</sub> to suppress backgrounds.
- Large-R jets reclustered from calibrated R=0.4 jets used as input to MCBOT to identify hadronically decaying V, H, and top quark.

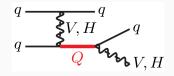



#### Results

| Model              | Observed (Expected) Mass Limits [TeV] |             |             |
|--------------------|---------------------------------------|-------------|-------------|
|                    | 2ℓ                                    | 31          | Combination |
| TT Singlet         | 1.14 (1.16)                           | 1.22 (1.21) | 1.27 (1.29) |
| $T\bar{T}$ Doublet | 1.34 (1.32)                           | 1.38 (1.37) | 1.46 (1.44) |
| $100\% \ T \to Zt$ | 1.43 (1.43)                           | 1.54 (1.50) | 1.60 (1.57) |
| BB Singlet         | 1.14 (1.21)                           | 1.11 (1.10) | 1.20 (1.25) |
| BB Doublet         | 1.31 (1.37)                           | 1.07 (1.04) | 1.32 (1.38) |
| $100\% \ B \to Zb$ | 1.40 (1.47)                           | 1.16 (1.18) | 1.42 (1.49) |

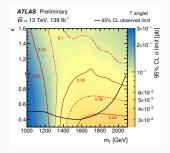

- No significant excesses
- Combined results exclude T masses upto 1.27 and 1.46 TeV for singlet and doublet configurations
- Combined results exclude B masses upto 1.20 and 1.32 TeV for singlet and doublet configurations
- These limits are better than the previous searches by more than 200 GeV.



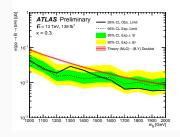



## Search for single production of vector-like T and B quarks

ATLAS-CONF-2021-040 ATLAS-CONF-2021-018

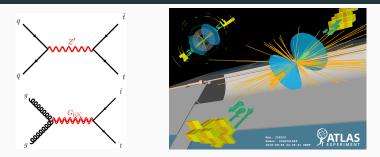



- $T \to Ht$  or  $T \to Zt$
- Leptonic top, and hadronic boosted H/Z
- Events classified into low (3-5) or high (≥ 6) jet multiplicity
- At least one forward jet
- *m*<sub>eff</sub> used to further discriminate signal and background




- $B \rightarrow Hb$ ,  $H \rightarrow bb$
- Higgs candidates (HC) reconstructed as single large-R jets
- VLB candidates formed by combining HC with small-R *b*-jet
- Additional requirements used to exploit jet sub-structure

#### Results




- No significant excesses
- Limits on T quark mass are stronger at higher couplings, and reach 2.07 TeV (expected 2.0 TeV) at  $\kappa = 1.0$
- At 1.6 TeV, all  $\kappa$  values above 0.4 are excluded



- No significant excesses
- Largest discrepancy between data and background prediction observed at  $m_B = 1.3$  TeV, with a local p-value of 0.03
- Resonances with  $\kappa = 0.3$  excluded across the full mass range 14

## Search for $t\bar{t}$ resonances in fully hadronic final states arXiv:2005.05138

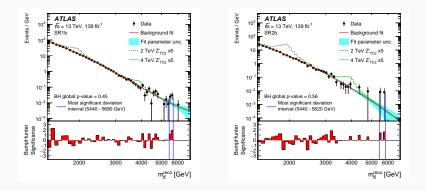


- $t\bar{t}$  resonances are predicted by 2HDMs, Randall-Sundrum (RS) models with warped extra dimensions etc.
- This analysis is optimized for  $m_{t\bar{t}} > 1.4$  TeV.
- Highly boosted tops, so difficult to individually identify decay products of the top quark.

A deep neural network (DNN) developed to solve this problem.

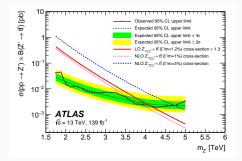
• DNN is applied to large-R jets to identify boosted top quarks, using jet sub-structure information.

#### **Event selection**


- Resonance  $(Z'_{TC2})$  mass range considered in the RS model: 1.75 TeV - 5 TeV
- Signal region divided into two: 1 or 2 *b*-jets associated with the large-Radius(=1.0) jets.
- Model-independent results obtained by bump-hunting on  $m_{t\bar{t}}$  spectrum.

#### Selection cuts:

- At least two large-R jets (*J*) which are top-tagged using the DNN
- $p_T^{\text{leading jet}} > 500 \text{ GeV}$
- $p_T^{\text{sub-leading jet}} > 350 \text{ GeV}$
- $m_{JJ} > 1.4 \text{TeV}$


- Leading and sub-leading jets required to be back-to-back in the transverse planes
- Rapidity distance required to be less than 1.8 to reject multijet background

#### Results I



- Using a fully data driven background, global function fitted in the SR.
- The Functional form and uncertainties estimated using a template built with MC + Data driven mixture.
- Most significant deviation in 5.44 5.69 TeV for 1 b-jet signal region and 5.44 - 5.82 TeV for 2b-jets signal region with the corresponding global p-values of 0.45 and 0.56, respectively.

### Results II



- For a Z' signal with a width Γ/m = 1.2%, masses up to
  4.1 TeV are excluded at 95% CL.
- Below 4.5 TeV, the expected sensitivity is limited by the statistical uncertainty of the background prediction.
- Above 4.5 TeV, systematic uncertainty dominates over the statistical uncertainty in the 2*b*-jet channel.

## Summary

#### Lepton flavor universality

- Deviations in LFU from the SM suggested by Belle and LHCb.
- Models attempting to ease the tension predict new particles such as heavy vector bosons and leptoquarks.
- Searches for Z' and spin-0 LQ presented here.
- No significant excesses seen but several new and innovative methods were developed.
- Limits on the masses with more data and newer methods stronger than before.

## Higgs fine-tuning

- Composite Higgs models provide a way to ensure a small Higgs mass.
- These models predict the existence of vector-like quarks.
- Searches for third generation vector-like quarks produced singly and in pairs presented here.

## Backup