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Introduction



Motivation

• Deviations from the SM in
lepton flavor universality seen in
B physics.

• Third generation quarks a good
place to look for new physics.
Higher mass → Stronger
coupling with the Higgs boson.

• Decays of top and bottom
quarks unique in the SM
Bottom quarks decay with a
displaced vertex while top quarks
decay before hadronisation.

A few of the issues SM cannot
explain

• Neutrino masses

• Smallness of the Higgs mass

• Dark Matter
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Contents

This talk is split into two main parts:

• Lepton flavor universality
• Search for heavy particles with b-tagged dijet mass distribution

and additional b-jets
• Search for third generation leptoquarks decaying to a top

quark and a τ lepton

• Higgs fine-tuning
• Pair-production of vector-like top/bottom quarks
• Single-production of vector-like top/bottom quark

• Bonus: Search for tt̄ resonances (predicted by both classes of
models)

This list is not exhaustive. A complete list of analyses with the full
Run-2 data collected by ATLAS can be found here.
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ResultswithData2018


Lepton flavor universality



Search for heavy particles with b-tagged dijet mass distribu-
tion and additional b-jets arxiv:2108.09059

• Search for resonant peaks in b−tagged dijet invariant mass spectrum

• Models explaining LFU anomalies also predict Z ′ and W ′ coupling to
third generation quarks

• First search in this final state probing masses upto 3.6 TeV

• Main source of background: multijet

• Dedicated trijet trigger used

• Innovative data-driven method to estimate background based on
orthonormal functions 3

https://arxiv.org/pdf/2108.09059.pdf


Background estimation

Fit to invariant mass spectrum of
the two leading b−tagged jets

• Shape impacted by asymmetric
thresholds of trijet triggers

• Functional decomposition used
arxiv:1805.04536

• Power law transformation on mjj

z =

(
mjj−m0

jj

λ

)α

• Spectrum modelled by
Ω(z) = ΣN

n=1cnEn(z)

• Truncated series given by the optimized
(λ, α,N) and cn determines the
background estimate
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• Pseudodata obtained by scaling
events passing pre-selection ith the
expected event-level b−tagging
selection efficiency of multijet
events in dat used to make sure
background estimate is adequate,
and data is not over-fitted

4

https://arxiv.org/abs/1805.04536


Results

310

 [GeV]1st-2ndMass

1−10

1

10

210

310

410

510

610

E
ve

nt
s

Data

Background

BumpHunter Interval

20×σ = 0), τ = 1, g
b

 = 1.6 TeV, g
Z'

 (Mbbb b→Z'bb

50×σ = 0), τ = 1, g
b

 = 2.5 TeV, g
Z'

 (Mbbb b→Z'bb

-1 = 13 TeV, 103 fbs

ATLAS

FD Fit Range:

[730, 3672] GeV

 p-Value: 0.892χFD Fit 

BH Scan Range:

[1300, 3672] GeV

BH p-Value: 0.55

210×8 310 310×2 310×3

 [GeV]jjm

2−
1−
0

1

2

S
ig

ni
fic

an
ce

Most significant excess in
[1921, 2114] GeV with

a p-value of 0.55

Z ′ bosons between 1.3 and 1.45
TeV excluded at 95% CL

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
 [TeV]LUV Z'm

2−10

1−10

1

10

210

) 
[p

b]
b

 b
→

(Z
'

B ×
Z

') 
b

 b
→

(p
p

σ

Observed 95% CL

Expected 95% CL

σ 1±

σ 2±

bbb b→Z'bb

= 0τ= 1, g
b

g

-1=13 TeV, 103 fbs

ATLAS

5



Search for third generation leptoquarks decaying to a top
quark and a τ lepton arxiv:2101.11582

• Similarities between quark and lepton sectors suggest a possible
underlying symmetry connecting the two sectors.

• Thus some extensions of SM predict leptoquarks (LQ) with non-zero
Baryon and Lepton numbers.

• LQ can have spin-0 or spin-1. Spin-0 LQs couple to quarks and leptons via
Yukawa interactions, and can also mediate processes that violate LFU.

• Pair-production of LQ via ggF and q − q̄ annihilation considered.
• Corresponding cross-sections are proportional to the mass of the LQ.
• A narrow width of roughly 0.2% assumed.
• The search considers the process LQd

3
¯LQd

3 → tτ tτ
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https://arxiv.org/pdf/2101.11582.pdf


Backgrounds

ATLAS

 = 13 TeVs

Signal regions
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• At least one light lepton, one hadronically decaying τ , ≥ 2 jets, ≥ 1 b−jet.
• Several final states based on multiplicity and flavor of lepton candidate.

• Main sources of background: tt̄ with or without fake lepton or τ .

• Masses scanned: 500-1600 GeV

• Simulations with corrections derived from data used for both, reducible and
irreducible backgrounds.

• meff used as the discriminating variable in the signal regions. 7



Results
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• Sensitivity dominated by 1`+ ≥ 1τ , with
improvements from 2`OS+ ≥ 1τ and
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• Expected sensitivity for B = 1 is > 5σ for
m < 1.21 TeV and > 3σ for m < 1.36
TeV.

• Assuming B = 1, mLQd
3
< 1.43 TeV

excluded at 95% CL.

• Sizeable sensitivity for B = 0.5 as well.
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Higgs fine-tuning



Composite-Higgs models and vector-like quarks

• The Higgs boson is a composite
pseudo-Nambu-Goldstone boson
(pNGB) from spontaneous breaking
of a global symmetry in a new
strongly coupled sector
→ This protects the Higgs mass.

• Models with partial compositeness
predict new vector-like fermions.

• Simplest extensions with VLQ (T
and B)

• VLQs assumed to decay via
charged and neutral currents to
3rd generation quarks.

• QCD pair-production:
Mass-independent, dominant
at low mass

• Single-production: Scales
with coupling, model
dependent, significant at
high mass. 9



Pair-production of vector-like quarks with at least one lepton-
ically decaying Z boson and a 3rd generation quark
ATLAS-CONF-2021-024

• Optimized for decays to a leptonically-decaying Z boson and a
third generation SM quark.
• Events characterized by high-pT Z boson, b−tagged jets,

high-pT large-R jets, exactly 2` or ≥ 3`, boosted W ,Z ,H,
and t.
• Categorization done using a neural-network based boosted
object tagger.
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-024/


Multi-Class Boosted Object Tagger (MCBOT)
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• Based on multi-class DNN trained
using RC jets from Z ′ → tt̄ and
W ′ →WZ simulations, with
multijet as background.

• Three signal labels (V ,H, top)
are obtained by matching the RC
jet to the corresponding boson or
top quark at generator-level
within ∆R < 0.75.

• Analysis exploits the high multiplicities of
jets, large-R jets, and b−jets in addition to
requirements on pZ

T and HT to suppress
backgrounds.

• Large-R jets reclustered from calibrated R=0.4
jets used as input to MCBOT to identify
hadronically decaying V ,H, and top quark.
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Results

Model Observed (Expected) Mass Limits [TeV]
2` 3` Combination

TT̄ Singlet 1.14 (1.16) 1.22 (1.21) 1.27 (1.29)
TT̄ Doublet 1.34 (1.32) 1.38 (1.37) 1.46 (1.44)
100% T → Z t 1.43 (1.43) 1.54 (1.50) 1.60 (1.57)

BB̄ Singlet 1.14 (1.21) 1.11 (1.10) 1.20 (1.25)
BB̄ Doublet 1.31 (1.37) 1.07 (1.04) 1.32 (1.38)
100% B → Zb 1.40 (1.47) 1.16 (1.18) 1.42 (1.49)

• No significant excesses

• Combined results exclude T masses
upto 1.27 and 1.46 TeV for singlet
and doublet configurations

• Combined results exclude B masses
upto 1.20 and 1.32 TeV for singlet
and doublet configurations

• These limits are better than the
previous searches by more than 200
GeV.
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Search for single production of vector-like T and B quarks
ATLAS-CONF-2021-040 ATLAS-CONF-2021-018

W

q
q′

H/Z

t

g b̄

b

T

• T → Ht or T → Zt

• Leptonic top, and hadronic boosted
H/Z

• Events classified into low (3-5) or high
(≥ 6) jet multiplicity

• At least one forward jet

• meff used to further discriminate signal
and background

• B → Hb, H → bb

• Higgs candidates (HC) reconstructed
as single large-R jets

• VLB candidates formed by combining
HC with small-R b−jet

• Additional requirements used to
exploit jet sub-structure
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Results
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T singlet

• No significant excesses

• Limits on T quark mass are
stronger at higher couplings, and
reach 2.07 TeV (expected 2.0 TeV)
at κ = 1.0

• At 1.6 TeV, all κ values above 0.4
are excluded
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• No significant excesses

• Largest discrepancy between data
and background prediction
observed at mB = 1.3 TeV, with
a local p-value of 0.03

• Resonances with κ = 0.3 excluded
across the full mass range 14



Search for tt̄ resonances in fully hadronic final states arXiv:2005.05138

• tt̄ resonances are predicted by 2HDMs, Randall-Sundrum (RS)
models with warped extra dimensions etc.
• This analysis is optimized for mtt̄ > 1.4 TeV.
• Highly boosted tops, so difficult to individually identify decay

products of the top quark.
A deep neural network (DNN) developed to solve this problem.
• DNN is applied to large-R jets to identify boosted top quarks,

using jet sub-structure information.
15

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2018-48/


Event selection

• Resonance (Z ′TC2) mass range considered in the RS model:
1.75 TeV − 5 TeV
• Signal region divided into two: 1 or 2 b−jets associated with

the large-Radius(=1.0) jets.
• Model-independent results obtained by bump-hunting on mtt̄

spectrum.

Selection cuts:

• At least two large-R jets (J)
which are top-tagged using
the DNN

• pleading jet
T > 500 GeV

• psub-leading jet
T > 350 GeV

• mJJ > 1.4TeV

• Leading and sub-leading jets
required to be back-to-back
in the transverse planes

• Rapidity distance required
to be less than 1.8 to reject
multijet background
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Results I
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• Using a fully data driven background, global function fitted in the SR.
• The Functional form and uncertainties estimated using a template built

with MC + Data driven mixture.
• Most significant deviation in 5.44− 5.69 TeV for 1 b−jet signal region

and 5.44− 5.82 TeV for 2b−jets signal region with the corresponding
global p-values of 0.45 and 0.56, respectively.
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Results II
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• For a Z ′ signal with a width Γ/m = 1.2%, masses up to
4.1 TeV are excluded at 95% CL.
• Below 4.5 TeV, the expected sensitivity is limited by the

statistical uncertainty of the background prediction.
• Above 4.5 TeV, systematic uncertainty dominates over the

statistical uncertainty in the 2b−jet channel.
18



Summary

Lepton flavor universality

• Deviations in LFU from the SM suggested by Belle and LHCb.
• Models attempting to ease the tension predict new particles such as

heavy vector bosons and leptoquarks.
• Searches for Z ′ and spin-0 LQ presented here.
• No significant excesses seen but several new and innovative methods were

developed.
• Limits on the masses with more data and newer methods stronger than

before.

Higgs fine-tuning

• Composite Higgs models provide a way to ensure a small Higgs mass.
• These models predict the existence of vector-like quarks.
• Searches for third generation vector-like quarks produced singly and in

pairs presented here.
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