

Latest results from the NA62 experiment at CERN

Gemma Tinti on behalf of the NA62 Collaboration

INFN Laboratori Nazionali di Frascati

Blois 2021: 32nd Rencontres de Blois on "Particle Physics and Cosmology"

\$ 162 s d

Flavour Physics

Search for New Physics at the EW scale with sizeable coupling to SM particles via indirect effects in loops:

Search for lepton flavour and number violation, rare and forbidden decays:

Experiment main goal:

$$BR(K^+ \to \pi^+ \nu \bar{\nu})$$

goal:
$$K^+ o \pi^\pm \mu^\mp e^+ \ K^+ o \pi^- l^+ l^+ \ K^+ o \mu^+ \nu X \ (K^+ o \pi^+ \pi^0) \, \pi^0 o ext{invisible}$$

Hidden sector Physics

Search for New Physics below the EW scale (MeV-GeV) feebly-coupled to SM particles via direct detection of long-lived particles:

Dark Photon(**DP**), Axion Like Particle (**ALPs**), Dark Scalar (**S**), Heavy neutral Lepton(**N**)

$$K^+ \rightarrow l^+ N$$

$K^+ \rightarrow \pi^+ \nu \bar{\nu} decay$

- FCNC loop process $s \rightarrow d$ coupling with high CKM suppression
- Clean theoretical prediction: short distance contributions
- Hadronic matrix elements: obtained from KI3 measurements and SU(2) isospin symmetry

$$BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = (0.84 \pm 0.03) \times 10^{-10} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^{\circ}}\right)^{0.74} = (0.84 \pm 0.10) \times 10^{-10}$$

Channel sensitive to physics BSM

The NA62 experiment at the SPS

NA62 @ CERN North Area, exploits a 400 GeV/c primary proton beam from the SPS. 2×10^{12} protons/spill

p on 40 cm Be target.

75 GeV/c unseparated hadrons beam:

 π^{+} (70%), K⁺ (6%), p(24%).

100 mrad divergence (RMS)

60x30 mm² transverse size.

The NA62 experiment at the SPS

NA62 @ CERN North Area, exploits a 400 GeV/c primary proton beam from the SPS. 2×10^{12} protons/spill

Intensity: 750 MHz (45 MHz K⁺). 4.8 x 10¹² K⁺ decays/year, ~ 4 10¹² K⁺ in FV Run I 2016 -2018: 2016/2017/2018 40%/60%/60-70% nominal intensity

Upstream particle: KTAG: Differential Cherenkov for K⁺ ID Decay region detectors (π^+) : **STRAW:** Track momentum spectrometer

GTK: Si pixel tracker **CHOD:** Scintillator hodoscope **CHANTI:** Anti-counter for inelastic

RICH: For π/μ /e ID

LKR/MUV1/2: Calorimetric systems

MUV3:

LAV/IRC/SAC:

Vetos:

photons

muons

interactions

$$P_{K}$$
 P_{V}
 $\theta_{\pi K}$

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ selection

$$m_{miss}^2 = (P_K - P_\pi)^2$$

Selection steps:

- K^+ and π^+ track reconstruction
 - L0: presence of charged particles and μ/γ veto
 - L1: K⁺ ID+ photon veto
- K^+ π^+ matching
 - Excellent time resolution O(100ps)
- Decay vertex FV + other cuts
- π^+ ID (μ^+ rejection ~ 10⁻⁸)
- Photon rejection (~ 10⁻⁸)
- Kinematic cuts (m_{miss}^2, p_{π}) :
 - Signal regions + control regions defined: blind analysis performed

MINIMUM BIAS data shown

NORMALIZATION CHANNEL $\pi^+\pi^0$ in MIN BIAS

Upstream background

OLD collimator, "S1" sample early 2018

NEW collimator, "S2" majority of 2018

Upstream background

 ${\overline{\underline{\mathbb{E}}}}^{800}_{600}$

400

200

-200

-400

-600

Track extrapolation at collimator in enriched sample of upstream events (data).

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Single Event Sensitivity

$$BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = \frac{N_{\pi \nu \nu}}{D \cdot N_{\pi \pi} \cdot A_{\pi \nu \nu} \cdot \epsilon_{RV} \cdot \epsilon_{trig}^{\pi \nu \nu}}$$

cienc	0.9	***********
Random veto efficien	0.8	The state of the s
	0.7	
	0.6	The state of the s
	0.5	
	0.4	-
	0.3	+ Photon + multiplicity rejection
	0.2	Photon rejection▼ LKr veto
	0.1	■ LAV veto ■ IRC+SAC veto
	0	

100 200 300 400 500 600 700 800 900 1000

Intensity [MHz]

	Subset S1	Subset S2
$N_{\pi\pi} \times 10^{-7}$	3.14	11.6
$A_{\pi\pi} \times 10^2$	7.62 ± 0.77	11.77 ± 1.18
$A_{\pi\nu\bar{\nu}} \times 10^2$	3.95 ± 0.40	6.37 ± 0.64
$\epsilon_{ m trig}^{ m PNN}$	0.89 ± 0.05	0.89 ± 0.05
$\epsilon_{ m RV}$	0.66 ± 0.01	0.66 ± 0.01
$SES \times 10^{10}$	0.54 ± 0.04	0.14 ± 0.01
$N_{\pi uar u}^{ m exp}$	$1.56 \pm 0.10 \pm 0.19_{\mathrm{ext}}$	$6.02 \pm 0.39 \pm 0.72_{\text{ext}}$

Single Event Sensitivity

$$BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = \frac{N_{\pi\nu\nu} \cdot BR(K^{+} \to \pi^{+} \pi^{0}) \cdot A_{\pi\pi} \cdot \epsilon_{trig}^{MB}}{D \cdot N_{\pi\pi} \cdot A_{\pi\nu\nu} \cdot \epsilon_{RV} \cdot \epsilon_{trig}^{\pi\nu\nu}}$$

Cancellation of systematic effects (PID, detector efficiencies, Kaon ID, beam related acceptance loss) Remaining systematic uncertainties:

SES

Trigger efficiency	5%
MC acceptance	3.5%
Random Veto	2%
Background(normalization)	0.7%
Instantaneous intensity	0.7%
Total	6.5%

Background from Kaon decays

Data driven estimation of background in control and signal region:

- \bullet $K^+ \rightarrow \pi^+ \pi^0$
- $K^+ \rightarrow \mu^+ \nu$
- $\bullet \quad \mathsf{K}^{\scriptscriptstyle +} \longrightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$

MC estimation:

• $K^+ \rightarrow \pi^+ \pi^- e^+ v$

$$N_{\rm decay}^{\rm exp} = N_{\rm bkg} \cdot f_{\rm kin}({\rm region})$$

Fraction of events in signal region in MINIMUM BIAS sample

Upstream background

- Data-driven estimate
- Evaluation using an enriched sample:
 - Signal selection with inverted CDA condition
 - weighted by mistag probability evaluated in data

Background	Subset S1	Subset S2
$\pi^+\pi^0$	0.23 ± 0.02	0.52 ± 0.05
$\mu^+ \nu$	0.19 ± 0.06	0.45 ± 0.06
$\pi^+\pi^-e^+\nu$	0.10 ± 0.03	0.41 ± 0.10
$\pi^{+}\pi^{+}\pi^{-}$	0.05 ± 0.02	0.17 ± 0.08
$\pi^+\gamma\gamma$	< 0.01	< 0.01
$\pi^0 l^+ \nu$	< 0.001	< 0.001
Upstream	$0.54^{+0.39}_{-0.21}$	$2.76^{+0.90}_{-0.70}$
Total	$1.11^{+0.40}_{-0.22}$	$4.31^{+0.91}_{-0.72}$

Control regions and expectation

14

Data selection 2018 unblinded

2016 and 2017 results

1 event observed BR(K⁺ $\rightarrow \pi^+ \nu \nu$)< 14 10⁻¹⁰ @90% CL Phys. Lett. B 791 (2019) 156-166

2 events observed BR(K⁺ $\rightarrow \pi^+ \nu \nu$)< 1.78 10^{-10} @90% CL JHEP 11 (2020) 042

Br $(K^+ \to \pi^+ \nu \overline{\nu})$ results

- Maximum likelihood fit using observed data and background expectations in each category
- 2016, 2017, 2018 with old collimator (S1) and 2018 with new collimator (S2)
- S2: sample split in 5 GeV/c wide bins from 15-45 GeV/c

JHEP 06 (2021) 093

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ beyond the Standard Model

Buras et al., JHEP11 (2015) 166

Isidori et al., Eur. Phys.J. C (2017) 77

New Physics: BR sensitive to the highest mass scale New Physics Models: MFV; Simplified Z, Z'; LFU violation; MSSM; Leptoquarks...

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ beyond the Standard Model

Buras et al., JHEP11 (2015) 166

Isidori et al., Eur. Phys.J. C (2017) 77

New Physics: BR sensitive to the highest mass scale New Physics Models: MFV; Simplified Z, Z'; LFU violation; MSSM; Leptoquarks...

\$452 s d

Flavour Physics

Search for New Physics at the EW scale with sizeable coupling to SM particles via indirect effects in loops:

Search for lepton flavour and number violation, rare and forbidden decays:

Experiment main goal:

$$BR(K^+ \to \pi^+ \nu \bar{\nu})$$

$$K^+ o \pi^\pm \mu^\mp e^+ \ K^+ o \pi^- l^+ l^+ \ K^+ o \mu^+
u X$$
 $(K^+ o \pi^+ \pi^0) \, \pi^0 o ext{invisible}$

Hidden sector Physics

Search for New Physics below the EW scale (MeV-GeV) feebly-coupled to SM particles via direct detection of long-lived particles:

Dark Photon(**DP**), Axion Like Particle (**ALPs**), Dark Scalar (**S**), Heavy neutral Lepton(**N**)

$$K^+ \rightarrow l^+ N$$

LFV and LNV in Kaon decays

- Lepton Number (L) and Lepton Flavour (L_e , L_μ , L_τ) are foreseen in some BSM theories: conservation laws in SM are not imposed by any local gauge symmetry
 - Lepton number violation:

eg: $K^+ \rightarrow \pi^- \mu^+ e^+$ $\Delta L=2$ via Majorana neutrinos

• Lepton flavour violation:

eg: $K^+ \rightarrow \pi^+ \mu^- e^+$ $\Delta L_e = 1$ and $\Delta L_\mu = 1$ Via leptoquark, Z'...

$K^+ \rightarrow \pi^{\pm} \mu^{\mp} e^+ (\pi^o \rightarrow \mu^{-} e^+)$: analysis workflow and results

- Experimental signature: 3 charged tracks with $\pi^{\pm}\mu^{\mp}$ e⁺
- Consistent with closed kinematics K⁺ decay
- The invariant mass $M_{\pi\nu e}$ of the three selected tracks build under the $\pi\mu$ e is used to distinguish between signal and background ($\sigma_{M}^{\sim}1.4$ MeV)
- Normalized with $K^+ \rightarrow \pi^+ \pi^+ \pi^-$
- Main bkg π mis-ID and decay in flight

1 order of magnitude improvements compared to previous searches Upper limits at 90% CL:

PRL 127 131802 (2021)

$$\mathcal{B}(K^+ \to \pi^- \mu^+ e^+) < 4.2 \times 10^{-11};$$

 $\mathcal{B}(K^+ \to \pi^+ \mu^- e^+) < 6.6 \times 10^{-11};$
 $\mathcal{B}(\pi^0 \to \mu^- e^+) < 3.2 \times 10^{-10}.$

Heavy neutral leptons

Right handed neutrinos or Heavy Neutral Leptons (HNL) are included in several extension of

• Search for HNL produced in K decays: $K^+ \rightarrow \mu^+ N$, $K^+ \rightarrow e^+ N$ due to mixing with standard model neutrinos

 $\mathcal{B}(K^+ \to \mu^+ N) =$ $\mathcal{B}(K^+ \to \mu^+ \nu) \cdot \rho_{\mu}(m_N) \cdot |U_{\mu 4}|^2$

- O(10⁻⁹) limits on |Ue4|² Big Bang nucleosynthesis (BBN) allowed range (dashed lines) excluded up to 340 MeV/c²
- O(10⁻⁸) limits on |Uμ4|² over the HNL mass range of 200–384 MeV/c²

PLB 807 (2020) 135599 PLB 816 (2021) 136259 ²³

Conclusions

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4stat.} \pm 0.9_{syst.}) \times 10^{-11} (3.4\sigma \text{ significance})$$

- The most precise measurement of $K^+ \rightarrow \pi^+ \nu \nu$
- Compatible with the SM prediction within 1σ
- Run II started in August 2021 till 2024
- New K⁺ tracker with extra station and veto counter to reduce upstream background
- New calorimeter to reject K⁺ bkg decays
- 100% beam intensity

Run II just started: stay tuned!

Conclusions

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4stat.} \pm 0.9_{syst.}) \times 10^{-11} (3.4\sigma \text{ significance})$$

- The most precise measurement of $K^+ \rightarrow \pi^+ \nu \nu$
- Compatible with the SM prediction within 1σ
- Run II started in August 2021 till 2024
- New K⁺ tracker with extra station and veto counter to reduce upstream background
- New calorimeter to reject K⁺ bkg decays
- 100% beam intensity

Run II just started: stay tuned!

Analysis strategy

$$m_{miss}^2 = (P_K - P_\pi)^2$$

- Decay in flight technique
- Build missing invariant mass square

$$\delta p_K = 1.\% p_K$$

$$\delta p_{\mu} = 0.3\% p_{\mu} \oplus 0.005\% p_{\mu}^2$$

$$\delta \theta = 40 \mu rad$$

$$\delta M^2 = 0.00196 \text{ GeV}^2$$

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ selection

Selection steps:

- K^+ and π^+ track reconstruction
 - \circ LO: presence of charged particles and μ/γ veto
 - L1: K⁺ ID+ photon veto
- K^+ π^+ matching
 - dT(RICH,KTAG,GTK) and closest distance of approach
- Decay vertex reconstruction + cuts
- π^+ ID (μ^+ rejection)

O(10⁻⁸) muon rejection

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ selection

Selection steps:

- K^+ and π^+ track reconstruction
 - L0: presence of charged particles and μ/γ veto
 - L1: K⁺ ID+ photon veto
- K^+ π^+ matching
 - dT(RICH,KTAG,GTK) and closest distance of approach
- Decay vertex reconstruction + cuts
- π^+ ID (μ^+ rejection)
- Photon rejection

Conclusions

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4stat.} \pm 0.9_{syst.}) \times 10^{-11} (3.4\sigma \text{ significance})$$

- The most precise measurement of $K^+ \rightarrow \pi^+ \nu \nu$
- Compatible with the SM prediction within 1σ
- Large improvements on most of the LFV and LNV K⁺ decays: sensitivity up to O(10⁻¹¹)
- Limits on $|U_{e4}|^2$ and $|U_{\mu 4}|^2$: O(10⁻⁹) and O(10⁻⁸) mass range 144(200)–462(384) MeV/c²

Run II just started: stay tuned!