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The indirect search for Beyond Standard Model (BSM) physics requires 

very precise measurements and predictions 

and greatly benefits from the use of a general framework

Precise measurements: LEP + LHC

LEP provides very precise measurements which leave little room 

for NP at the EW scale. LHC and Tevatron have also contributed to this 

thanks to some of their measurements for observables in the 

W, top and Higgs sectors

Could it be that LHC can also compete with or complement LEP 

by means of the measurements it can provide for the Z observables?

We will explore this possibility by looking at Drell-Yan dilepton

production, which are sensitive to the 𝑍𝑓𝑓 couplings
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2. Theory framework

SMEFT: We focus only on Z and W pole observables, 

which are mainly sensitive to non-derivative interactions between 

EW bosons and fermions:

We end up with only 20 

independent parameters
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3. “Traditional” pole observables

Z pole observables: W pole observables:
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s, 𝑐, 𝑏 couplings:
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[Update of Efrati, Falkowski & Soreq ‘15] 
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3. “Traditional” pole observables

Leptonic couplings:

s, 𝑐, 𝑏 couplings:

W mass correction:

What about 𝑍𝑢𝑢 and 𝑍𝑑𝑑 corrections?

[Update of Efrati, Falkowski & Soreq ‘15] 
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3. “Traditional” pole observables

One linear combination of up and down quark vertex corrections is unconstrained:

It is useful to rearrange these 4 couplings so that we can separate the blind direction

from the rest of the parameter space:
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3. “Traditional” pole observables

One linear combination of up and down quark vertex corrections is unconstrained:

It is useful to rearrange these 4 couplings so that we can separate the blind direction

from the rest of the parameter space:

𝒕 unconstrained. Can we use LHC data to restrict it?

This can be achieved 

using D0 data [Efrati, 

Falkowski, Soreq, ‘15] 

but with very modest 

precision: |𝑡| < 0.2
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4. The 𝑨𝑭𝑩 asymmetry at the LHC

We find that the cleanest observable for the task at hand is the Drell-Yan

forward-backward asymmetry 𝐴𝐹𝐵

Parton level:

Forward events: cos 𝜃∗ > 0
Backward events: cos 𝜃∗ < 0
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𝑓(𝑍𝑞𝑞)
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4. The 𝑨𝑭𝑩 asymmetry at the LHC
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Hadron level: This asymmetry cannot be directly observed at the LHC because 

there we have incoming protons. We must modify its definition by including PDFs
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𝑓(𝑃𝐷𝐹𝑠)
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𝑓(𝑃𝐷𝐹𝑠)

= 𝑆𝑀 1 + #𝛿𝑔𝑖 + ⋯
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4. The 𝑨𝑭𝑩 asymmetry at the LHC
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Exp. value: [ATLAS-CONF-2018-037 (2018)]
NNLO in QCD SM prediction: 

[Bozzi et al., 1007.2351; 

Catani et al., 0903.2120; 

Catani et al., 1507.06937] 

𝐴4 = Τ3 8 𝐴𝐹𝐵
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Exp. value: [ATLAS-CONF-2018-037 (2018)]
NNLO in QCD SM prediction: 

[Bozzi et al., 1007.2351; 

Catani et al., 0903.2120; 

Catani et al., 1507.06937] 

Restrictions from each bin:

Restrictions on the four uncorrelated and orthonormal linear combinations:

𝐴4 = Τ3 8 𝐴𝐹𝐵

We are capable of obtaining 

per mille level constraints
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4. The 𝑨𝑭𝑩 asymmetry at the LHC

Impact on the global fit:

The combination of 

LEP+LHC is good 

enough to lift the blind 

direction, but we are not 

as restrictive as in 𝑡′, 
since 𝑡 · 𝑡′ = 0.16
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LHC constrains a specific direction much strongly than D0. Both hadron 

measurements are important for the global fit, although for simple scenarios LHC 

has a larger effect. All in all, “traditional pole” observables + ATLAS + D0 give:

The other 16 parameters are also being fitted here, to almost no changes in their limits
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4. The 𝑨𝑭𝑩 asymmetry at the LHC

𝐴𝐹𝐵
𝐿𝐻𝐶 provides crucial information in simple NP scenarios:
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5. Conclusions
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LHC 𝐴𝐹𝐵 provides ~0.5% bounds on 𝑍𝑞𝑞 corrections

The 𝒕 variable is lifted with the inclusion of the 𝑨𝑭𝑩 ATLAS input

We find that the ATLAS 𝐴𝐹𝐵 information provides a significant improvement 

on LEP-only bounds on the 𝑍𝑞𝑞 vertex corrections even in simple scenarios 

with few free parameters
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LHC 𝐴𝐹𝐵 provides ~0.5% bounds on 𝑍𝑞𝑞 corrections

The 𝒕 variable is lifted with the inclusion of the 𝑨𝑭𝑩 ATLAS input

Outlook 1: Current and future measurements of Drell-Yan dilepton production 

by LHC could be analyzed following a similar procedure to ours in order to 

extend the impact of hadron colliders on the electroweak precision program

Outlook 2: Information from Drell-Yan cross sections could be added, 

and off-pole data could be analyzed too (⟶ LLQQ operators enter)

We find that the ATLAS 𝐴𝐹𝐵 information provides a significant improvement 

on LEP-only bounds on the 𝑍𝑞𝑞 vertex corrections even in simple scenarios 

with few free parameters
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Backup 1: 𝑨𝑭𝑩 impact on the global SMEFT fit

20.10.2021 Víctor Bresó-Pla 36



37

Backup 2: Allowed regions for some simple NP settings
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4. The 𝑨𝑭𝑩 asymmetry at the LHC

The use of these two inputs leaves much less room for the inclusion 

of nonlinear contributions:
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