Searches for strong production of SUSY particles with the ATLAS detector

D UNIVERSITÄT BERN John Anders On behalf of the ATLAS collaboration 32nd Rencontres de Blois

21/10/2021

Strong SUSY

- SUSY theories introduce an additional (spin) symmetry to the SM
 - Very rich phenomenology due to introduction of SUSY partner particles
 - Provides a solution to the hierarchy problem
 - Can lead to gauge unification
- Searches focusing on gluino & squark production
 - Many particles in the final states (jets, leptons, photons)
- Dedicated 3G SUSY searches (top- and bottom-squarks)
 - Unique phenomenology & final states with heavy fermions
- LHC can probe the ~TeV regime for strong production
 - Preferred from naturalness considerations

RPC vs RPV

- R-Parity Conservation (RPC):
 - Prevents Proton decay
 - Conserves Baryon & Lepton number
 - Lightest SUSY particle (LSP) is stable and non-interacting (DM candidate)
 - Final states containing large Missing Transverse momentum

• Most general super-potential contains B- & L-number violating terms (non-zero lambda terms)

$$W_{R_p}=\mu_iH_uL_i+rac{1}{2}\lambda_{ijk}L_iL_jE_k^c+\lambda_{ijk}'L_iQ_jD_k^c+rac{1}{2}\lambda_{ijk}''U_i^cD_j^cD_k^c$$

- Other conditions (not just R-parity) can prevent proton decay
- More weakly constrained than RPC scenarios
- Very rich phenomenology, final states with many particles (and small missing transverse momentum)
- Covering prompt RPV decays

ATLAS SUSY Search Strategy

- Will cover 7 analysis (targeting RPC and RPV scenarios), all following a similar general strategy
 - Signal Regions (SRs) are defined based upon kinematic differences between SUSY signal and SM background
 - Can be a region with multiple bins, or just a single-bin region
 - SM backgrounds are estimated in Control regions (CRs)
 - Semi-data driven method with normalisation in an orthogonal kinematic region
 - If possible, fully data-driven background methods are used
 - Often used to estimate backgrounds arising from detector mismeasurement
 - Background estimate validated in Validation regions (VRs)
 - Again, orthogonal to the CR & SR
- Results are interpreted in a model-independent manner and also in the context of simplified SUSY models
 - A likelihood fit is performed with the CRs & SR

Photons + Jets + E_T^{miss}

ATLAS-CONF-2021-028

- RPC Scenarios with General Gauge Mediation (GGM)
 - Pair production of gluinos
 - Leading to Gravitino LSP
 - NLSP is either Higgsino or Bino
- Three SRs defined using final states with a high $p_{\rm T}$ photon
 - Many jets, large H_{T} and large E_{T}^{miss}
 - Optimised to target different regions of phase space
- Follow up to the 36fb⁻¹ analysis (2.36σ local excess)
- CRs defined for the 3 main backgrounds
 - γ +Jets: $\Delta \phi$ (j, E_T^{miss}) < 0.4 (inverted SR selection)
 - Wy, estimated in \geq 1L, 0 b-jet region
 - tt γ , estimated in ≥ 1 L, ≥ 1 b-jet region
- Data driven method for electrons & jets "faking" photons
 - Electron misidentification rate measured using the ratio between Zee to $Ze\gamma$ events
 - ABCD method, defined with isolation criteria, used to estimate events with jets reconstructed as photons

VRM2H

VRI 1

VRM1H

/RM1I

VRM2I

VBI 2

VRI 3

VRI 4

VRF

Photons + Jets + E_T^{miss}

ATLAS-CONF-2021-028

- No significant excesses above the SM
 - Previous (36 fb⁻¹) excess no longer present
- 95% CL Limits set in gluino-neutralino mass plane
 - Using the SR with best expected sensitivity

6

m_a [GeV]

b-jets & E_T^{miss}

JHEP 05 (2021) 93

- Search for sbottom pair production in final states with 0L, b-jets and high E_T^{miss}
 - 3 sets of SRs defined, each targeting a different sbottom-neutralino mass splitting scenario
 - SRA large mass splitting, using m_{CT}
 - SRB intermediate splitting, using a BDT
 - SRC very compressed scenario using an ISR selection
 - Uses specifically developed soft-b-tagging algorithm to ID secondary vertices
 - Main background in all regions is Z+Jets, estimated in dedicated 2L regions
 - Additional CRs defined to estimate top and W+jets in SRC region (1L selection)

b-jets & E_Tmiss

JHEP 05 (2021) 93

- Results consistent with the SM expectation
 - SRA multi-bin fit in both m_{CT} and m_{eff}
 - SRB shape fit in BDT discriminant
 - SRC multi-bin fit in the number of soft-b-vertices

Significantly gain in sensitivity in the compressed region, driven by soft-b-tagging

Sbottom with Taus, b-jets and E_T^{miss}

PRD 104, 032014 (2021)

- Sbottom search in final states with hadronically decaying taus, b-jets and high E_T^{miss}
 - Two-step SUSY decay, with Wino-like NLSP decaying to Bino-like LSP (and Higgs)
 - SR defined requiring at least two hadronic-taus and at least two b-jets
 - Key discriminating variable: $\Theta_{\min}(\tau, b)$ (minimum 3D angle between tau, and b-jet)
 - Main background arising from top-processes and Z+jets
 - Significant effort estimating the background arising from leptons mis-identified as taus
 - Uses ratio of tau to muon events with hadronic top-decays

Sbottom with Taus, b-jets and E_T^{miss}

(RPC)

PRD 104, 032014 (2021)

- Fit performed in Θ_{\min} (au ,b)
 - Peaks at low values expected for top-backgrounds, larger values for sbottom signals

 Limits placed in a previously uncovered region of the phase space, benefitting from targeting a different final state with respect to the previous analysis

Stop to stau with tau leptons b-jets and E_T^{miss}

2108.07665

- Stop search in scenarios with an intermediate stau decay
 - GMSB scenario with Gravitino LSP
- Final states with hadronically decaying taus (1 or 2), 0L, $E_{\rm T}^{\rm miss}$ and b-jets
- Two SRs defined, both targeting large mass splitting between stop-stau
 - Di-tau SR using $m_{T2}(\tau_1, \tau_2)$ as key discriminating variable
 - Single-tau SR uses scalar sum of $p_T(\tau)$ and $p_T(j_1)$, $p_T(j_2)$
- Main backgrounds arise from top-production (top-pair and single-top)

Events

 10^{3}

ATLAS

√s=13 TeV, 139 fb⁻¹

Data

₩ Total SM

tt (2 real τ) tt (1 real τ)

Single top

Stop to stau with tau leptons b-jets and E_T^{miss}

SUSY-2019-18

Observed events in good agreement with the post-fit background prediction

1600

Stop search with many b-jets

EPJC 81 (2021) 11

- RPV Stop search with non-zero $\lambda^{"}_{\ 323}$
 - Baryon number violating decay
 - Leading to a final state with many b-jets
- SRs defined with at least 6 jets, 4 of which are b-jets, and 0L
 - SRs are split into different $n_{jet} \ \& \ n_{b\text{-jet}}$ multiplicities
- Multi-jet production is the main background, and is estimated in a fully data-driven manner using a two-step method
 - Extrapolate the number of b-jets from a 5-jet (≥ 2 b-jet) region, to higher b-jet multiplicities using a parameterised probability that an additional b-jet is present in the event
 - Probability of additional b-jets is then extended to higher multiplicities

Stop search with many b-jets

EPJC 81 (2021) 11

- Good agreement with the post-fit background expectation
- Statistical combination of each $n_{jet},\,n_{b\text{-}jet}$ bin is performed to enhance signal sensitivity

 $m(\widetilde{\chi}_1^{\pm})$ [GeV]

RPV Search with 1L and many jets

2106.09609

- Very powerful search in final states with at least 1L and many jets
 - Sensitive to gluino and stop pair production in a variety of RPV scenarios
 - Various intermediate decays are considered
- Two sets of SRs with either 1L or 2L (same-charge)
 - 'Jet counting analysis' using SRs with high jet and b-jet multiplicities and requirements on the jet p_T thresholds
- Main backgrounds for each region are estimated using a fully data-driven method
 - Functional form used to describe the evolution of background events (per process) with respect to jet-multiplicity

 $r^X(j) = N^X(j+1)/N^X(j)$

- r^x(j) is constant at high jet-multiplicities and "staircase scaling" is used to estimate $N^{X}(j+1)$
- b-jet multiplicity extrapolation from low b-jet multiplicity regions, • to higher b-jet multiplicities

ttbar (1L)

ē

RPV Search with 1L and many jets

2106.09609

- Data consistent with SM background predictions
- Significant gain in sensitivity compared to previous results
- Limits also placed using different assumptions on the neutralino composition

Final states with 4L

JHEP 07 (2021) 167

- Search for SUSY in final states with at least 4L
 - Targets both strong & EWK, RPC and RPV scenarios
 - EWK interpretation discussed in <u>A. Cervelli's talk</u>
 - For strong-production, gluino pair-production with non-zero λ_{12k} or λ_{i33} is considered
 - Regions defined requiring at least 1 b-jet and high $m_{\mbox{\scriptsize eff}}$
- Main backgrounds arise from ZZ and ttZ

Conclusion

- Comprehensive ATLAS search program targeting strongly produced SUSY, in both RPC and RPV scenarios throughout Run 2
- Greatly enhanced sensitivity compared to early Run 2 results
 - Due to the increased data, but also more complex analysis methods
 - Data-driven estimates of key backgrounds
- Further searches are ongoing to fully exploit the Run 2 dataset In addition to the on-going work preparing for Run 3 and beyond!

18