





# Precision electroweak measurements using single boson events at CMS



Kenneth Long, CERN for the CMS Collaboration



#### Introduction



- Electroweak theory has been **extremely successful** over vast orders of magnitude
- Some parameters fundamentally experimental, but **relationships predicted by SM**
- Huge samples of W and Z boson production at LHC enable studies of SM self consistency
- O(billion) event data sets
- Understanding systematics take time, most results limited to 2016 data at present
- Studies with almost4x more data inprogress





80.35





#### W boson production: rapidity, helicity, and PDF constraints



- W boson rapidity, and lepton pseduorapdity from decay, largely predicted by PDF





- Opportunity to constrain PDF (for, e.g., mw measurement)
- Motivated by <u>phenomenological study</u>
- Build complex binned likelihood from 2D binning in (p<sub>T</sub>, η) sensitive to helicity fractions (and therefore PDFs)
  - Massive experimental (and technical) undertaking
  - > 3000 bins (e±,µ±) with thousands of nuisance parameters
  - Dedicated optimisation framework developed for huge maximum likelihood fit





Kenneth Long

3



#### Differential W boson measurements, PDF constraints



- Many results derived from exploiting this likelihood
  - Extensive unfolded distributions, including for W helicity fractions
  - PDF constraints from performing the fit with the signal cross sections fixed to prediction within theoretical uncertainties
    - NNPDF3.0 hessian vars using MC2Hessian
- Profiled PDF nuisances used to derive post-fit PDF
  - Should not be interpreted as a full PDF fit (uses NLO MC, old PDF set) but clear constraining power
    - Step towards reducing uncertainties in W mass measurement





lepton scale still major challenges for mw



 $10^{-1}$ 



#### W boson branching fractions

SMP-18-011 CER

- Lepton universality (LU) predicts equivalent decay rates of W to all &
  - Intriguing τ/μ difference seen at LEP, not confirmed by ATLAS
- Decay independent of production mechanism
  - Use tt production as primary source (no bias on non-triggering  $\ell$ )
  - Categorize signal contributions: tt, tW, W all included
  - τ vs. light ℓ driven by p<sub>T</sub> spectrum (different wrt ATLAS, uses vertex)
  - Measure all W leptonic BRs, including e, μ, τ hadronic or ℓ decay



p<sub>T</sub> to differentiate τ → e,μ from prompt e,μ

Kenneth Long



Important contribution from τ<sub>h</sub>



Z CR for constraining t reco. unc.



|              | $N_j = 0$ | $N_j = 1$ | $N_j = 2$  | $N_j = 3$           | $N_j \geq 4$ |
|--------------|-----------|-----------|------------|---------------------|--------------|
| $N_b = 0$    | ετ, μτ    | еτ, μτ,   | eτ,        | μτ                  |              |
|              | еµ        | еµ        | ее, µ      | μ <mark>,</mark> eμ |              |
| $N_b = 1$    |           | ετ, μτ    | ετ, μτ     | ε ετ, μτ            |              |
|              |           | еµ        | ее, µµ, еµ |                     |              |
|              | ,         |           |            |                     | eh, µh       |
| $N_b \geq 2$ |           |           | ετ, μτ     | eτ,                 | μτ           |
|              |           |           | ее, µµ, еµ |                     |              |
|              |           | ,         |            |                     | eh, µh       |



## W boson branching fractions



- Results obtained via maximum likelihood fit
  - Connect differential, relative yields to relative branching ratios (including e, μ, τ hadronic or leptonic decay)
  - Multiple fits: separately e,  $\mu$ ,  $\tau$ ; combined assuming LU; partial LU (e =  $\mu$ )
- Dominant systematics
  - Lepton scale, reco eff.
  - Data driven background, tt modelling
- Very consistent with LU and ATLAS measurement
- Also derive SM parameters ( $V_{cs}$ ,  $\alpha_s$ ) using measured branching ratios under SM assumption

|                                                               | CMS               | LEP                            | CMS+LEP                        | ATLAS                          |
|---------------------------------------------------------------|-------------------|--------------------------------|--------------------------------|--------------------------------|
| $W	o \mu  u/W	o e u$                                          | $1.009 \pm 0.009$ | $\boldsymbol{0.993 \pm 0.019}$ | $\boldsymbol{1.008 \pm 0.008}$ | _                              |
| W 	o 	au  u / W 	o e  u                                       | $0.994 \pm 0.021$ | $\boldsymbol{1.063 \pm 0.027}$ | $\boldsymbol{1.022 \pm 0.016}$ | _                              |
| $W 	o 	au  u / W 	o \mu  u$                                   | $0.985 \pm 0.020$ | $\boldsymbol{1.070 \pm 0.026}$ | $\boldsymbol{1.014 \pm 0.015}$ | $\boldsymbol{0.992 \pm 0.013}$ |
| $2W  ightarrow 	au u/(W  ightarrow e u + W  ightarrow \mu u)$ | $1.002 \pm 0.019$ | $\boldsymbol{1.066 \pm 0.025}$ | $\boldsymbol{1.016 \pm 0.015}$ | _                              |









# Z boson production: p<sub>T</sub> distribution



CERN

- ptz "simple" but critical observable
  - Sensitive to PDFs, higher-order QCD, EW corrections
  - Background for many BSM searches, standard candle for H, exotics
  - Insight into ptw spectrum, crucial for mw measurement in high pileup
- **Z(vv) channel**: increase stats in tails wrt classic precision Z(ll) measurement,

- Principle challenge estimation of W(lv) background
  - Estimate from data with single lepton control regions, simultaneously in likelihood fit
  - Theoretical predictions for extrapolation (same approach as for monojet searches)
  - arxiv:705.04664









## Z boson production: measured p<sub>T</sub> distribution

JHEP 05 (2021) 205 JHEP 12 (2019) 061



- Z(vv) channel important at high mass
- Confirms excellent performance of theoretical tools
  - NLO EW corrections evident
  - Rivet routine available: comparison to any prediction
    - Using current measurements to guide simulation for future

      precision measurements (weak mixing angle, W mass) and BSM (boosted H backgrounds)



- FEWZ NNLO QCD
- NNLOJET (Z+1j @NNLO)









## Z boson production: multi-differential pT distribution



- Fully leptonic channels also used for multi-differential p<sub>T</sub> measurement over mℓℓ ∈ [50, 76, 106, 170, 350, 1000] GeV + multi-differential with jets (<u>SMP-21-003</u>)
  - Background relevant off Z-peak, estimate from data (opposite sign)
  - Extensive study of modern MC predictions + Rivet routine to be released soon





- MG5\_aMC@NLO ≤2j@NLO
- ArTeMIDe: Parton branching with NNLO TMD PDFs+QED FSR correction from Pythia
- <u>CASCADE</u>: parton branching with TMD PDF+Pythia6
  - Geneva: N3LL'+NNLO+Pythia8



# Z boson invisible branching fraction

- Branching ratios fundamental, independent of production mechanism
- In practice, produce at collider, correct for (hopefully small) assumptions
- Indirect Z(vv) measurement
  - At LEP (e+e-): measure width from energy scan, all visible partial widths, subtract.
  - → Very accurate, this is the number in the PDG
- Direct measurement
  - At LEP:  $Z(vv)+\gamma$ . O(10x) less sensitive than indirect
  - At LHC: only indirect possible. Use Z(vv)+j
- Procedure at CMS
  - Z(vv) channel with ptmiss > 200 GeV
  - Recoil in ee/µµ channels > 200 GeV
  - W(lv) from single lepton CR
    - Transfer factors from MC (lost lep.)
    - Validate consistency of e/μ/τ







Recoil for ee/mm

channels,

(pTmiss excluding leptons)

Data

Minor

SM prefit

SM postfit

 $Z(\rightarrow \nu\nu) + i$ 

 $W(\rightarrow l\nu) + i$ 

QCD multijet

 $Z/\gamma^*(\rightarrow ll) + j$ 



#### Z boson invisible branching fraction: results



- Measurement via simultaneous fit to 3 signal regions + norm. In W CRs (unconstrained norm.)
  - True observable is ratio of  $Z(vv)/Z(\ell \ell)$  in fiducial (high  $p_T^Z$ ) region
  - Corrections to pt spectrum separately for each channel via "monojet approach": arxiv:705.04664
    - Rely on theory prediction such that ratio in fiducial region = ratio in inclusive ( $\sim 0.5\%$  unc.)
- Jet uncertainties strongly reduced in ratio. Similar importance to lepton efficiency unc. (Each ~2%)
- Precision directly competitive with LEP direct measurement







# Z boson forward backward asymmetry

SMP-21-002

- Drell-Yan angular properties are a function of Z/γ\* vector/axial-vector couplings

 $rac{d\sigma}{d\cos heta^*} = C\left[rac{3}{8}\left(1+\cos^2 heta^*
ight) + A_{
m FB}\cos heta^*
ight]$  Vector Axial vector/



- Non-zero  $A_{FB}$  arises from different  $\mathbb{Z}/\gamma^*$  couplings, interference
  - $sin\theta_W^{eff}$  measurement from  $A_{FB}$  via coupling dependence (around Z peak)
  - Additional heavy vector interactions could lead to AFB deviations at high metals and the second results are second to the second results and the second results are second results.
- Study AFB in mass range meet in [170, 1400] GeV
  - Parameterize (CS frame) angular dependence, extract AFB from maximum likelihood fit
- $\sigma_{\text{F}} (\theta^* > 0)$   $\sigma_{\text{B}} (\theta^* < 0)$

- Exact direction of quark unknown, guess from  $p_{T^{\ell}}$ :  $cos\theta^*$  —>  $cos\theta_r$ 





## Z boson forward backward asymmetry: results





- Fit distribution per mass bin
  - Separately for ee/μμ + combined
  - Separate fits test ee/µµ consistency (lepton universality)
- AFB consistent with SM over wide mass range
  - Inclusive  $\Delta A_{FB}$  (difference between e,  $\mu$ ) differs from expectation by 2.4 $\sigma$
- Dominant uncertainties from fake background est. and PDF









#### Conclusions



- The LHC, and CMS, have proven to be precision tools, competitive with measurements of fundamental parameters at LEP
- Thanks to years of collecting very high quality data, developing understanding of detector, and incredible performance of theoretical tools
- Exploiting full Run II data and beyond will take time, but clear road map in place for updated results and **new studies at high precision**
- New frontiers of precision also opening up (e.g., diboson measurements, P. Vischia's talk)