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Practicalities

Schedule: two days × two hours
This has evolved to being an excerpt from a longer course (about 10h)

You can find additional material, as well as a set of exercises, at
https://agenda.irmp.ucl.ac.be/event/4097/
The exercises, in particular, are designed to show the inner workings of several techniques: try to run
them! You can find them at https://github.com/vischia/intensiveCourse_public

Many interesting references, nice reading list for your career
Papers mostly cited in the topical slides
Some cool books cited here and there and in the appendix

These slides include some material that we won’t able to cover today
Mostly to provide some additional details without having to refer to the full course
Slides with this advanced material are those with the title in red

Unless stated otherwise, figures belong to P. Vischia for inclusion in my upcoming textbook on
Statistics for HEP
(textbook to be published by Springer in 2021)

Or I forgot to put the reference, let me know if you spot any figure obviously lacking reference, so that
I can fix it
I cannot put the recordings publicly online as “massive online course”, so I will distribute them only to
registered participants, and have to ask you to not record yourself. I hope you understand.

Your feedback is crucial for improving these lectures (a feedback form will be provided at the
end of the lectures)!

You can also send me an email during the lectures: if it is something I can fix for the next day, I’ll
gladly do so!
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Confidence Intervals in nontrivial cases
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Confidence intervals!

Confidence interval for θ with probability content β
The range θa < θ < θb containing the true value θ0 with probability β
The physicists sometimes improperly say the uncertainty on the parameter θ

Given a p.d.f., the probability content is β = P(a ≤ X ≤ b) =
∫ b

a f (X|θ)dX

If θ is unknown (as is usually the case), use auxiliary variable Z = Z(X, θ) with p.d.f. g(Z)
independent of θ
If Z can be found, then the problem is to estimate interval P(θa ≤ θ0 ≤ θb) = β

Confidence interval
A method yielding an interval satisfying this property has coverage

Example: if f (X|θ) = N(µ, σ2) with unknown
µ, σ, choose Z = X−µ

σ

Find [c, d] in
β = P(c ≤ Z ≤ d) = Φ(d)− Φ(c) by finding
[Zα, Zα+β ]

Infinite interval choices: here central interval
α = 1−β

2

Plot from James, 2nd ed.
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Confidence intervals in many dimensions

Generalization to multidimensional θ is immediate
Probability statement concerns the whole θ, not the individual θi

Shape of the ellipsoid governed by the correlation coefficient (or the mutual information)
between the parameters
Arbitrariety in the choice of the interval is still present

Plot from James, 2nd ed.
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Coverage

Coverage probability of a method for calculating a confidence interval [θ1, θ2]:
P(θ1 ≤ θtrue ≤ θ2)

Fraction of times, over a set of (usually hypothetical) measurements, that the resulting interval covers
the true value of the parameter
Can sample with toys to study coverage

Coverage is not a property of a specific confidence interval!
Coverage is a property of the method you use to compute your confidence interval

It is calculated from the sampling distribution of your confidence intervals

The nominal coverage is the value of confidence level you have built your method around
(often 0.95)
When actually derive a set of intervals, the fraction of them that contain θtrue ideally would be
equal to the nominal coverage

You can build toy experiments in each of whose you sample N times for a known value of θtrue
You calculate the interval for each toy experiment
You count how many times the interval contains the true value

Nominal coverage (CL) and the actual coverage (Co) observed with toys should agree
If all the assumptions you used in computing the intervals are valid
If they don’t agree, it might be that Co < CL (undercoverage) or Co > CL (overcoverage)
It’s OK to strive to be conservative, but one might be unnecessarily lowering the precision of the
measurement
When Co! = CL you usually want at least a convergence to equality in some limit
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Coverage: the binomial case

For discrete distributions, the discreteness induces steps in the probability content of the
interval

Continuous case: P(a ≤ X ≤ b) =
∫ b

a f (X|θ)dX = β

Discrete case: P(a ≤ X ≤ b) =
∑b

a f (X|θ)dX ≤ β

Binomial: find interval (rlow, rhigh) such that
∑r=rhigh

r=rlow

( r
N

)
pr(1− p)N−r ≤ 1− α

Also,
( r

N

)
computationally taxing for large r and N

Approximations are found in order to deal with the problem

Gaussian approximation: p± Z1−α/2

√
p(1−p)

N

Clopper Pearson: invert two single-tailed binomial tests∑N
r=0
( r

N

)
pn(1− plow)N−n ≤ α/2∑N

r=0
( r

N

)
pr(1− phigh)N−r ≤ α/2

Single-tailed→ use α/2 instead of α
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Coverage: the binomial case

Gaussian approximation: p± Z1−α/2

√
p(1−p)

N

Clopper Pearson: invert two single-tailed binomial tests, designed to overcover∑N
r=0
( r

N

)
pn(1− plow)N−n ≤ α/2∑N

r=0
( r

N

)
pr(1− phigh)N−r ≤ α/2

Single-tailed→ use α/2 instead of α

This afternoon we will study the coverage of intervals from a gaussian approximation and
from the Clopper-Pearson method

We will also study the coverage of intervals obtained from crossings with ∆lnL

Question time: Coverage
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Coverage, N = 20
Gaussian approximation bad for small sample sizes
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Coverage, N = 1000
Gaussian approximation bad near p = 0 and p = 1 even for large sample sizes
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Confidence belts: the Neyman construction

Unique solutions to finding confidence intervals are infinite
Central intervals, lower limits, upper limits, etc

Let’s suppose we have chosen a way

Build horizontally: for each (hypothetical) value of θ, determine t1(θ), t2(θ) such that∫ t2
t1

P(t|θ)dt = β

Read vertically: from the observed value t0, determine [θL, θU ] by intersection
The resulting interval might be disconnected in severely non-linear cases

Probability content statements to be seen in a frequentist way
Repeating many times the experiment, the fraction of [θL, θ

U ] containing θ0 is β

Plot from James, 2nd ed.
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Upper limits for non-negative parameters
Gaussian measurement ( variance 1) of a non-negative parameter µ ∼ 0 (physical bound)
Individual prescriptions are self-consistent

90% central limit (solid lines)
90% upper limit (single dashed line)

Other choices are problematic (flip-flopping): never choose after seeing the data!
“quote upper limit if xobs is less than 3σ from zero, and central limit above” (shaded)
Coverage not guaranteed anymore (see e.g. µ = 2.5)

Unphysical values and empty intervals: choose 90% central interval, measure xobs = −2.0
Don’t extrapolate to an unphysical interval for the true value of µ!
The interval is simply empty, i.e. does not contain any allowed value of µ
The method still has coverage (90% of other hypothetical intervals would cover the true value)

Plot from James, 2nd ed.
Vischia Statistics for HEP March 15th and 17th, 2021 12 / 157



Unphysical values: Feldman-Cousins

The Neyman construction results in guaranteed coverage, but choice still free on how to fill
probability content

Different ordering principles are possible (e.g. central/upper/lower limits)

Unified approach for determining interval for µ = µ0: the likelihood ratio ordering principle

Include in order by largest `(x) =
P(x|µ0)
P(x|µ̂)

µ̂ value of µ which maximizes P(x|µ) within the physical region
µ̂ remains equal to zero for µ < 1.65, yielding deviation w.r.t. central intervals

Minimizes Type II error (likelihood
ratio for simple test is the most
powerful test)

Solves the problem of empty
intervals

Avoids flip-flopping in choosing an
ordering prescription

Plot from James, 2nd ed.
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Feldman-Cousins in HEP
The most typical HEP application of F-C is confidence belts for the mean of a Poisson
distribution
Discreteness of the problem affects coverage
When performing the Neyman construction, will add discrete elements of probability
The exact probability content won’t be achieved, must accept overcoverage∫ x2

x1

f (x|θ)dx = β →
U∑

i=L

P(xi|θ) ≥ β

Overcoverage larger for small values of µ (but less than other methods)

Plot from James, 2nd ed.
Vischia Statistics for HEP March 15th and 17th, 2021 14 / 157



Bayesian intervals

Often numerically identical to frequentist confidence intervals
Particularly in the large sample limit

Interpretation is different: credible intervals

Posterior density summarizes the complete knowledge about θ

π(θ|X) =

∏N
i=1 f (Xi, θ)π(θ)∫ ∏N
i=1 f (Xi, θ)π(θ)dθ

Sometimes you may want to summarize the prior with estimates of its location and of its
dispersion

For the location, you can use mode or median (see tomorrow’s lecture)

An interval [θL, θU ] with content β defined by
∫ θU

θL
π(θ|X)dθ = β

Bayesian statement! P(θL < θ < θU) = β
Again, non unique

Issues with empty intervals don’t arise, though, because the prior takes care of defining the
physical region in a natural way!

But this implies that central intervals cannot be seamlessly converted into upper limits
Need the notion of shortest interval
Issue of the metric (present in frequentist statistic) solved because here the preferred metric is
defined by the prior
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Bayesian intervals and coverage
What about computing the frequentist coverage for Bayesian intervals?
Question time: Coverage Bayes

Even if you are not interested in frequentist methods, it can be useful! Certainly it doesn’t hurt
Knowing the sampling properties of a method can always give insights or work as a
cross-check of the method
Particularly given that typically Bayesian and frequentist answers tend to converge in the
high-N limit

Except for hypothesis tests, we’ll find out later today

Image from the Statistical Statistics Memes Facebook Page

Vischia Statistics for HEP March 15th and 17th, 2021 16 / 157

https://www.facebook.com/statsmemes/


Bayesian intervals and coverage
What about computing the frequentist coverage for Bayesian intervals?
Question time: Coverage Bayes
Even if you are not interested in frequentist methods, it can be useful! Certainly it doesn’t hurt
Knowing the sampling properties of a method can always give insights or work as a
cross-check of the method
Particularly given that typically Bayesian and frequentist answers tend to converge in the
high-N limit

Except for hypothesis tests, we’ll find out later today

Image from the Statistical Statistics Memes Facebook Page

Vischia Statistics for HEP March 15th and 17th, 2021 16 / 157

https://www.facebook.com/statsmemes/


Test of Hypotheses
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What is an hypothesis...

Is our hypothesis compatible with the experimental data? By how much?
Hypothesis: a complete rule that defines probabilities for data.

An hypothesis is simple if it is completely specified (or if each of its parameters is fixed to a single
value)
An hypothesis is complex if it consists in fact in a family of hypotheses parameterized by one or more
parameters

“Classical” hypothesis testing is based on frequentist statistics
An hypothesis—as we do for a parameter ~θtrue—is either true or false. We might improperly say that
P(H) can only be either 0 or 1
The concept of probability is defined only for a set of data~x

We take into account probabilities for data, P(~x|H)

For a fixed hypotesis, often we write P(~x; H), skipping over the fact that it is a conditional probability
The size of the vector~x can be large or just 1, and the data can be either continuos or discrete.
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...and how do we test it?

The hypothesis can depend on a parameter
Technically, it consists in a family of hypotheses scanned by the parameter
We use the parameter as a proxy for the hypothesis, P(~x; θ) := P(~x; H(θ).

We are working in frequentist statistics, so there is no P(H) enabling conversion from P(~x|θ)
to P(θ|~x).
Statistical test

A statistical test is a proposition concerning the compatibility of H with the available data.
A binary test has only two possible outcomes: either accept or reject the hypothesis

Vischia Statistics for HEP March 15th and 17th, 2021 19 / 157



Testing an hypothesis H0...
H0 is normally the hypothesis that we assume true in absence of further evidence
Let X be a function of the observations (called “test statistic”)
Let W be the space of all possible values of X, and divide it into

A critical region w: observations X falling into w are regarded as suggesting that H0 is NOT true
A region of acceptance W − w

The size of the critical region is adjusted to obtain a desired level of significance α
Also called size of the test
P(X ∈ w|H0) = α
α is the (hopefully small) probability of rejecting H0 when H0 is actually true

OnceW is defined, given an observed value~xobs in the space of data, we define the test by
saying that we reject the hypothesis H0 if~xobs ∈ W.
If~xobs is inside the critical region, then H0 is rejected; in the other case, H0 is accepted

In this context, accepting H0 does not mean demonstrating its truth, but simply not rejecting it
Choosing a small α is equivalent to giving a priori preference to H0!!!
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...while introducing some spice in it
The definition ofW depends only on its area α, without any other condition

Any other area of area α can be defined as critical region, independently on how it is placed with
respect to~xobs
In particular, for an infinite number of choices ofW , the point~xobs—which beforehand was situated
outside ofW—is now included inside the critical region
In this condition, the result of the test switches from accept H0 to reject H0

To remove or at least reduce this arbitrariness in the choice ofW, we introduce the alternative
hypothesis, H1

20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Test statistic

D
en

si
ty

H0=Poisson(B)
Critical region

 (reject H0)

α

20 40 60 80 100 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Test statistic

D
en

si
ty

H0=Poisson(B)

Critical
 region W2

α

Critical
 region W1

α

Qobs

Qobs not in W1

Qobs in W2

20 40 60 80 100

Vischia Statistics for HEP March 15th and 17th, 2021 21 / 157



Choose reasonable regions
Choose a critical region so that P(~x ∈ W|H0) is α under H0, and as large as possible under H1

Choice of regions is somehow arbitrary, and many choices are not more justified than others
In Physics, after ruling out an hypothesis we aim at substituting it with one which explains
better the data

Often H1 becomes the new H0, e.g. from (H0:noHiggs, H1 =Higgs) to (H1:Higgs ,
H1:otherNewPhysics)
We can use our expectations about reasonable alternative hypotheses to design our test to exlude H0
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Could not find source for the meme
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A small example

H0: pp→ pp elastic scattering

H1: pp→ ppπ0

Compute the missing mass M (as
total rest energy of unseen
particles)

Under H0, M = 0

Under H1, M = 135 MeV

Choose H0 Choose H1
H0 is true 1− α α (Type I error)
H1 is true β (Type II error) 1− β (power)

Plot from James, 2nd ed.

Vischia Statistics for HEP March 15th and 17th, 2021 23 / 157



A longer example

Student’s t distribution

Test the mean!

Will not run it this afternoon, you
can check it at home hyptest.ipynb
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Basic hypothesis testing – 4
The usefulness of the test depends on how well it discriminates against the alternative
hypothesis
The measure of usefulness is the power of the test

P(X ∈ w|H1) = 1− β
Power (1− β) is the probabiliity of X falling into the critical region if H1 is true
P(X ∈ W − w|H1) = β
β is the probability that X will fall into the acceptance region if H1 is true

NOTE: some authors use β where we use 1− β. Pay attention, and live with it.
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Comparing tests

For parametric (families of) hypotheses, the power depends on the parameter
H0 : θ = θ0
H1 : θ = θ1
Power: p(θ1) = 1− β

Generalize for all possible alternative hypotheses: p(θ) = 1− β(θ)
For the null, p(θ0) = 1− β(θ0) = α

Plot from James, 2nd ed.
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Properties of tests
More powerful test: a test which at least as powerful as any other test for a given θ
Uniformly more powerful test: a test which is the more powerful test for any value of θ

A less powerful test might be preferrable if more robust than the UMP1

If we increase the number of observations, it makes sense to require consistency
The more observations we add, the more the test distinguishes between the two hypotheses
Power function tends to a step function for N →∞

Biased test: argmin(p(θ)) 6= θ0

More likely to accept H0 when it is false than
when it is true

Big no-no for θ0 vs θ1]

Still useful (larger power) for θ0 vs θ2

Plot from James, 2nd ed.
1Robust: a test with low sensitivity to unimportant changes of the null hypothesis
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Play with Type I (α) and Type II (β) errors freely

Image from the Statistical Statistics Memes Facebook Page
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Play with Type I (α) and Type II (β) errors freely

Comparing only based on the power curve
is asymmetric w.r.t. α
For each value of α = p(θ0), compute
β = p(θ1), and draw the curve

Unbiased tests fall under the line 1− β = α
Curves closer to the axes are better tests

Ultimately, though, choose based on the
cost function of a wrong decision

Bayesian decision theory

Plot from James, 2nd ed.
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Find the most powerful test

Testing simple hypotheses H0 vs H1, find the best critical region

Maximize power curve 1− β =
∫

wα
f (X|θ1)dX, given α =

∫
wα

f (X|θ0)dX

The best critical region wα consists in the region satisfying the likelihood ratio equation

`(X, θ0, θ1) :=
f (X|θ1)

f (X|θ0)
≥ cα

The criterion, called Neyman-Pearson test, is therefore
If `(X, θ0, θ1) > cα then choose H1
If `(X, θ0, θ1) ≤ cα then choose H0

The likelihood ratio must be calculable for any X
The hypotheses must therefore be completely specified simple hypotheses
For complex hypotheses, ` is not necessarily optimal
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Demonstrating the Neyman-Pearson lemma

We want to prove that `(X, θ0, θ1) :=
f (X|θ1)
f (X|θ0)

≥ cα gives the best acceptance region

Image from Evan Vucci, Shutterstock, meme is mine
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Demonstrating the Neyman-Pearson lemma
We want to prove that `(X, θ0, θ1) :=

f (X|θ1)
f (X|θ0)

≥ cα gives the best region
Critical region from NP (red contour), demonstrate that any other region (blue contour) has less power
Take out a wedge region and add it e.g. to the other side
Regions must have equal area under H0 (tests with same size)
Being on different sides of the red contour, under H1 data is less likely in the added region than in the
removed one
Less probability to reject the null→ test based on the new contour is less powerful!
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Intermezzo: the Wilks theorem

The likelihood ratio is commonly used
As any test statistic in the market, in order to select critical regions based on confidence
levels it is necessary to know its distribution

Run toys to find its distribution (very expensive if you want to model extreme tails)
Find some asymptotic condition under which the likelihood ratio assumes a simple known form

Wilks theorem: when the data sample size tends to∞, the likelihood ratio tends to
χ2(N − N0)

Exercise yesterday afternoon
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Verifying the Wilks theorem: N=2

Log−likelihood ratio

Sampled values of log−likelihood ratio values
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Verifying the Wilks theorem: N=10

Log−likelihood ratio

Sampled values of log−likelihood ratio values
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Verifying the Wilks theorem: N=100

Log−likelihood ratio

Sampled values of log−likelihood ratio values
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Bayesian model selection — two models...

The parameter θ might be predicted by two models M0 and M1: P(θ|~x,M) =
P(~x|θ,M)P(θ|M)

P(~x|M)

A step further than yesterday in writing down the Bayes theorem: now multiple conditioning
P(~x|M) =

∫
P(~x|θ,M)P(θ|M)dθ: Bayesian evidence or model likelihood

Posterior for M0: P(M0|~x) =
P(~x|M0)π(M0)

P(~x)

Posterior for M1: P(M1|~x) =
P(~x|M1)π(M1)

P(~x)

The odds indicate relative preference of one model over the other

Posterior odds: P(M0|~x)
P(M1|~x)

=
P(~x|M0)π(M0)
P(~x|M1)π(M1)

Posterior odds = Bayes Factor × prior odds

B01 :=
P(~x|M0)
P(~x|M1)

Various slightly different scales for the Bayes Factor
Interesting: deciban, unit supposedly theorized by Turing (according to IJ Good) as the smallest
change of evidence human mind can discern

Jeffreys
Kass and Raftery Trotta

Images from Wikipedia and from Roberto Trotta, Chair Lemaitre Lectures 2018
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Bayesian model selection — ...with many models

Image from Roberto Trotta, Chair Lemaitre Lectures 2018
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Bayesian model selection — Discourage nonpredictive models

The Bayes Factor also takes care of penalizing excessive model complexity

Highly predictive models are rewarded, broadly-non-null priors are penalized

From Roberto Trotta, Chair Lemaitre Lectures 2018
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Bayes vs p-values: the Jeffreys-Lindley paradox
Data X (N data sampled from f (x|θ))<

H0:θ = θ0. Prior: π0 (non-zero for point mass, Dirac’s δ, counting measure)
H1: θ! = θ0. Prior: π1 = 1− π0 (usual Lebesgue measure)

Conditional on H1 being true:
Prior probability density g(θ)

If f (x|θ) ∼ Gaus(θ, σ2), then the sample mean X̄ ∼ Gaus(θ, σtot = σ/N)

Likelihood ratio of H0 to best fit for H1: λ =
L(θ0)

L(θ̂)
= exp(−Z2/2) ∝ σtot

τ
B01; Z := θ̂−θ0

σtot

λ disfavours the null hypothesis for large significances (small p-values), independent of sample size
B01 includes σtot/τ (Ockham Factor, penalizing H1 for imprecise determination of θ), sample
dependent!

For arbitrarily large Z (small p-values), λ disfavours H0, while there is always a N for which B01
favours H0 over H1

Image from Cousins, doi:10.1007/s11229-014-0525-z
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How does HEP looks for new physics?

Goal: seamless transition between exclusion, observation, discovery (historically for the
Higgs)

Exclude Higgs as strongly as possible in its absence (in a region where we would be sensitive to its
presence)
Confirm its existence as strongly as possible in its presence (in a region where we are sensitive to its
presence)
Maintain Type I and Type II errors below specified (small) levels

Identify observables, and a suitable test statistic Q
Define rules for exclusion/discovery, i.e. ranges of values of Q leading to various conclusions

Specify the significance of the statement, in form of confidence level (CL)

Confidence limit: value of a parameter (mass, xsec) excluded at a given confidence level CL
A confidence limit is an upper(lower) limit if the exclusion confidence is greater(less) than the
specified CL for all values of the parameter below(above) the confidence limit

The resulting intervals are neither frequentist nor bayesian!
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Testing hypotheses near the boundary: Zech

Counting experiment: observe n events

Assume they come from Poisson processes: n ∼ Pois(s + b), with known b

Set limit on s given nobs

Exclude values of s for which P(n ≤ nobs|s + b) ≤ α (guaranteed coverage 1− α)
b = 3, nobs = 0

Exclude s + b ≤ 3 at 95%CL
Therefore excluding s ≤ 0, i.e. all possible values of s (can’t distinguish b-only from very-small-s)

Zech: let’s condition on nb ≤ nobs (nb unknown number of background events)
For small nb the procedure is more likely to undercover than when nb is large, and the distribution of
nb is independent of s
P(n ≤ nobs|nb ≤ nobs, s + b) = ... =

P(n≤nobs|s+b)
P(n≤nobs|b)
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Beyond coverage: CLs

Goal: seamless transition between exclusion, observation, discovery (historically for the
Higgs)

Exclude Higgs as strongly as possible in its absence (in a region where we would be sensitive to its
presence)
Confirm its existence as strongly as possible in its presence (in a region where we are sensitive to its
presence)
Maintain Type I and Type II errors below specified (small) levels

Identify observables, and a suitable test statistic Q
Define rules for exclusion/discovery, i.e. ranges of values of Q leading to various conclusions

Specify the significance of the statement, in form of confidence level (CL)

Confidence limit: value of a parameter (mass, xsec) excluded at a given confidence level CL
A confidence limit is an upper(lower) limit if the exclusion confidence is greater(less) than the
specified CL for all values of the parameter below(above) the confidence limit

The resulting intervals are neither frequentist nor bayesian!
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Get your confidence levels right

Find a monotonic Q for increasing signal-like
experiments (e.g. likelihood ratio)
CLs+b = Ps+b(Q ≤ Qobs)

Small values imply poor compatibility with S + B
hypothesis, favouring B-only

CLb = Pb(Q ≤ Qobs)
Large (close to 1) values imply poor compatibility with
B-only, favouring S + B

What to do when the estimated parameter is
unphysical?

The same issue solved by Feldman-Cousins
If there is also underfluctuation of backgrounds, it’s
possible to exclude even zero events at 95%CL!
It would be a statement about future experiments
Not enough information to make statements about the
signal

Normalize the S + B confidence level to the B-only
confidence level!

Plot from Read, CERN-open-2000-205
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Avoid issues at low signal rates

CLs :=
CLs+b

CLb
x

Exclude the signal hypothesis at confidence level CL if
1− CLs ≤ CL
Ratio of confidences is not a confidence

The hypotetical false exclusion rate is generally less
than the nominal 1− CL rate
CLs and the actual false exclusion rate grow more
different the more S + B and B p.d.f. become similar

CLs increases coverage, i.e. the range of parameters
that can be exclude is reduced

It is more conservative
Approximation of the confidence in the signal hypothesis
that might be obtained if there was no background

Avoids the issue of CLs+b with experiments with the
same small expected signal

With different backgrounds, the experiment with the
larger background might have a better expected
performance

Formally corresponds to have H0 = H(θ! = 0) and
test it against H1 = H(θ = 0)

Test inversion!

Dashed: CLs+b
Solid: CLs

S < 3: exclusion for a B-free search ≡ 0

Plot from Read, CERN-open-2000-205
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That’s what we used for the Higgs discovery!

Apply the CLs method to each Higgs mass point
Green/yellow bands indicate the ±1σ and ±2σ intervals for the expected values under B-only
hypothesis

Obtained by taking the quantiles of the B-only hypothesis

Plot from Higgs discovery paper
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Deal with CLs!

This afternoon we’ll play with CLs!
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I have an excess, do I?

Plot from https://cds.cern.ch/record/2230893
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Quantifying excesses

Quantify the presence of the signal by using the background-only p-value
Probability that the background fluctuates yielding and excess as large or larger of the observed one

For the mass of a resonance, q0 = −2logL(data|0,θ̂0)

L(data|µ̂,θ̂)
, with µ̂ ≥ 0

Interested only in upwards fluctuation, accumulate downwards one to zero

Use pseudo-data to generate background-only Poisson counts and nuisance parameters θobs
0

Use distribution to evaluate tail probability p0 = P(q0 ≤ qobs
0 )

Convert to one-sided Gaussian tail areas by inverting p = 1
2 P
χ2

1
(Z2)
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Left plot by Pietro Vischia, right plot from ATL-PHYS-PUB-2011-011 and Higgs discovery paper
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Look only at the null hypothesis!

Probability of obtaining a fluctuation with test statistic qobs or larger, under the null hypothesis
H0

Distribution of test statistic under H0 either with toys or asymptotic approximation (if Nobs is large, then
q ∼ χ2(1))
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Plots from Vischia—in preparation with Springer
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And the sigmas?

Just an artifact to convert p-values to easy-to-remember O(1) numbers
1σ: p = 0.159
3σ: p = 0.00135
5σ: p = 0.000000285

No approximation involved, just a change of units to gaussian variances: one-sided tail area
1

2π

∫∞
x e−

t2
2 dt = p

p-value must be flat under the null, or interpretation is invalidated

HEP: usually interested in one-sided deviations (upper fluctuations)
Most other disciplines interested in two-sided effects (e.g. 2σ: p2sided = 0.05)

Left: ATLAS Collaboration, Right: https://saylordotorg.github.io/
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Question time: Significance
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Fluctuations in HEP? The proposal of a 5σ criterion
Rosenfeld, 1968 (https://escholarship.org/uc/item/6zm2636q) Are there any Far-out Mesons
or Baryons?

“In summary of all the discussion abouve, I conclude that each of our 150,000 annual histograms is
capable of generating somewhere between 10 and 100 deceptive upward fluctuations [...] (we)
should expect several 4σ and hundreds of 3σ fluctuations”
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HEP has a history of unconfirmed effects
3.5σ (2005, CDF) in dimuon (candidate bottom squark, doi:/10.1103/PhysRevD.72.092003)

∼ 4σ (1996, Aleph) in four-jet (Higgs boson candidate, doi:/10.1007/BF02906976)
6σ (2004, H1) (narrow c̄ baryon state, doi:/10.1016/j.physletb.2004.03.012)

H1 speaks of “Evidence”, not confirmed.
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The revenge of the pentaquarks

9σ and 12σ (2015, LHCb): pentaquarks! (doi:/10.1103/PhysRevLett.115.072001)
Several cross-checks (fit to mass spectrum, fit with non-resonant components, evolution of complex
amplitute in Argand diagrams)
Mass measurement, soft statement: “Interpreted as resonant states they must have minimal quark
content of ccuud, and would therefore be called charmonium-pentaquark states.

One remark: quoting significances above about 5–6σ is meaningless
Asymptotic approximation not trustable (tail effects). Can run lots of toys but...
...cannot possibly trust knowing your systematic uncertainties to that level
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The Look-elsewhere effect — 1
Searching for a resonance X of arbitrary mass

H0 = no resonance, the mass of the resonance is not defined (Standard Model)
H1 = H(M 6= 0), but there are infinite possible values of M

Wilks theorem not valid anymore, no unique test statistic encompassing every possible H1
Quantify the compatibility of an observation with the B-only hypothesis

q0(m̂X) = maxmX q0(mX)

Write a global p-value as pglobal
b := P(q0(m̂X) > u) ≤ 〈Nu〉+ 1

2 P
χ2

1
(u)

u fixed confidence level
Crossings (Davis, Biometrika 74, 33–43 (1987)) , computable using pseudo-data (toys)

Plot from Gross-Vitells, 10.1140/epjc/s10052-010-1470-8
Vischia Statistics for HEP March 15th and 17th, 2021 57 / 157



The Look-elsewhere effect — 2

Ratio of local (excess right here) and global (excess anywhere) p-values: trial factor
Asymptoticly linear in the number of search regions and in the fixed significance level

Dashed red lines: prediction based on the formula with upcrossings
Blue: 106 toys (pseudoexperiments)

Here asymptotic means for increasingly smaller tail probabilities

Plot from Gross-Vitells, 10.1140/epjc/s10052-010-1470-8
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The Look-elsewhere effect, now also in 2D — 1
Extension to two dimensions requires using the theory of random fields

Excursion set: set of points for which the value of a field is larger than a threshold u
Euler characteristics interpretable as number of disconnected regions minus number of holes

Plot from Gross-Vitells, 10.1016/j.astropartphys.2011.08.005

Vischia Statistics for HEP March 15th and 17th, 2021 59 / 157



The Look-elsewhere effect, now also in 2D — 2

Asymptoticity holds also for the 2D effect, as desired
Dashed red lines: prediction based on the formula with upcrossings
Blue: 200k toys (pseudoexperiments)

Plot from Gross-Vitells, 10.1016/j.astropartphys.2011.08.005
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When there is no LEE, you still need to make sure your systematics are right

In 2011 OPERA (arXiv:1109.4897v1) reported superluminal neutrino speed, with 6.0σ
significance...

...but they had a loose cable connector (doi:/10.1007/JHEP10(2012)093)
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Truth and models: all models are wrong

Box (https://www.jstor.org/stable/2286841) warns that any model is an approximation
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Truth and models: HEP is special

Cousins (doi:/10.1007/s11229-014-0525-z) notes HEP is in a privileged position when
compared with social or medical sciences

Others (Gelman, Raftery, Berger, Bernardo) argue that a point null is impossible (at most
“small”)
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Ground truth, models, and point nulls

I think a point or almost-point null is related to our simplifications rather than with a claim on
reality
Some disciplines deal with phenomena which cannot (yet) be explained from first principles

Maybe one day we will have a full quasi-deterministic model of a whole body or brain
Certainly so far most models are attempts at finding a functional form for the relationship between two
variables

Some disciplines (HEP) have to do with phenomena which can be explained from first
principles

These principles are reasonable but not necessarily the best or the only possible ones
No guarantee that they reflect a universal truth
Arguing that the vast experimental agreement of the SM implies ground truth behaves based on our
principles sounds a bit wishful thinking
What can be claimed is that the vast experimental agreement warrants the use of point or quasi-point
nulls

Box’s view on models, and the Occam’s Razor, should still lead considerations on model
choices

A version of the Occam’s Razor is even implemented in Bayesian model selection

Still, to avoid interpreting fluctuations as real effects all disciplines should strive—when
possible—to describe causal relationships rather than correlations
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Goodness of fit tests

Also the three most common types of hypothesis testing also mention somewhere about duality
test-confregion
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The χ2 distribution: why degrees of freedom?
Sample randomly from a Gaussian p.d.f., obtaining X1 y X2
Q = X2

1 + X2
2 (or in general Q =

∑N
i=1 X2

i ) is itself a random variable
What is P(Q ≥ 6)? Just integrate the χ2(N = 2) distribution from 6 to∞

Depends only on N!
If we sample 12 times from a Gaussian and compute Q =

∑12
i=1 X2

i , then Q ∼ χ2(N = 12)

Theorem: if Z1, ..., ZN is a sequence of normal random variables, the sum V =
∑N

i=1 Z2
i is

distributed as a χ2(N)
The sum of squares is closely linked to the variance E[(X − µ)2] = E[X2]− µ2 from Eq. ??

The χ2 distribution is useful for goodness-of-fit tests that check how much two distributions
diverge point-by-point
It is also the large-sample limit of many distributions (useful to simplify them to a single
parameter)
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The χ2 distribution: goodness-of-fit tests 1/
Consider a set of M measurements {(Xi, Yi)}

Suppose Yi are affected by a random error representable by a gaussian with variance σi

Consider a function g(X) with predictive capacity, i.e. such that for each i we have g(Xi) ∼ Yi
Pearson’s χ2 function related to the difference between the prediction and the experimental
measurement in each point

χ2
P :=

M∑
i=1

[
Yi − g(Xi)

σi

]2

(1)

Neyman’s χ2 is a similar expression under some assumptions
If the gaussian error on the measurements is constant, it can be factorized
If Yi represent event counts Yi = ni, then the errors can be approximated with σi ∝

√
ni

χ2
N :=

M∑
i=1

(
ni − g(Xi)

)2

ni
(2)
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The χ2 distribution: goodness-of-fit tests 2/
If g(Xi) ∼ Yi (i.e. g(X) reasonably predicts the data), then each term of the sum is
approximately 1
Consider a function of χ2

N,P and of the number of measurements M
E[f (χ2

N,P,M)] = M
The function is analytically a χ2:

f (χ2
,M) =

2−
M
2

Γ
(

N
2

)χN−2e−
χ2
2 (3)

The cumulative of f is

1− cum(f ) = P(χ
2
> χ

2
obs|g(x) is the correct model) (4)

Comparing χ2 with the number of degrees of freedom M, we therefore have a criterion to test
for goodness-of-fit

For a given M, the p.d.f. is known (χ2(M)) and the observed value can be computed and compared
with it
Null hypothesis: there is no difference between prediction and observation (i.e. g fits well the data)
Alternative hypothesis: there is a significant difference between prediction and observation
Under the null, the sum of squares is distributed as a χ2(M)

p-values can be calculated by integration of the χ2 distribution
χ2

M
∼ 1⇒ g(X) approximates well the data

χ2

M
>> 1⇒ poor model (increases χ2), or statistically improbable fluctuation

χ2

M
<< 1⇒ overestimated σi, or fraudulent data, or statistically improbable fluctuation

(5)
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The χ2 distribution: goodness-of-fit tests 3/

χ2(M) tends to a Normal distribution for M →∞
Slow convergence
It is generally not a good idea to substitute a χ2 distribution with a Gaussian

The goodness of fit seen so far is valid only if the model (the function g(X)) is fixed

Sometimes the model has k free parameters that were not given and that have been fit to the
data
Then the observed value of χ2 must be compared with χ2(N′), with N′ = N − k degrees of
freedom

N′ = N − k are called reduced degrees of freedom
This however works only if the model is linear in the parameters
If the model is not linear in the parameters, when comparing χ2

obs with χ2(N − k) then the p-values
will be deceptively small!

Variant of the χ2 for small datasets: the G-test
g = 2

∑
Oijln(Oij/Eij)

It responds better when the number of events is low (Petersen 2012)
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Machine learning
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Statistical Learning

Vast amounts of data are being generated in many fields, and the statistician’s job is to make
sense of it all: to extract important patterns and trends, and understand “what the data says.” We
call this learning from data.

Hastie, Tibshirani, Friedman (Springer 2017)
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We must efficiently collect and well reconstruct data

∼ 40 MHz (millions per second) collision photos
Can store and reconstruct only a few of them
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We must efficiently sample from our models

Costly MonteCarlo simulations, sampling from these high-dimensional probability density
functions

Vischia Statistics for HEP March 15th and 17th, 2021 73 / 157



We must improve the tools for detailed studies (e.g. EFT, differential)

The Standard Model leaves some questions open
What is the origin of the Higgs mechanism? The Higgs field vacuum expectation (246 GeV) very far
from Planck scale (quantum gravity): hierarchy problem
Origin of the observed neutrino masses? Most explanations of neutrino non-zero masses and mixing
are beyond the SM
Dark Matter: a new, hidden sector of particles and forces?
Is the Higgs boson discovered in 2012 the Standard Model one?

The study of Higgs boson physics is crucial for many of these topics
New scalar bosons (e.g. charged Higgs bosons) by simple extensions of the Higgs sector of the SM
Slight deviations from the expected properties of the observed Higgs boson could reveal signs for
new physics

Image by the EOS be.h network
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Ultimately, we must improve our inference: the end goal!

Statistical inference to make statements about
parameters of our models
New physics?

Probability of extreme fluctuation under the null
measures significance of excess
Function of other parameters under investigation
(e.g. Higgs boson mass in 2012)

Systematic uncertainties induce variations in the
number of events in the search region

We account for them in our statistical procedures at the
hypothesis testing stage

Often machine learning techniques are employed to
optimize the analysis at early stages: systematic
uncertainties not accounted for in the
optimization
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Images from Phys. Lett. B 716 (2012) 30 and P. Vischia, ***** (textbook to be published by Springer in 2021)
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Mathematical formalism

Let’s formalize the concept of learning from data

We’ll look into the formalism mostly for supervised learning

Fore more mathematical details, see arXiv:1712.04741 and Joan Bruna’s lectures online
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The elements of supervised learning: input space

X : a high-dimensional input space
The challenges come from the high dimensionality!

If all dimensions are real-valued, Rd

For square images of side
√

d, X =Rd , d ∼ O(106)

Figure frm scientiamobile.com
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The elements of supervised learning: data probability distribution

ν: unknown data probability distribution
We can sample from it to obtain an arbitrary amount of data points
We are not allowed to use any analytic information about it in our computations
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The elements of supervised learning: the target function

f ∗:X →R, unknown target function
In case of multidimensional output to a vector of dimension k, f∗:X →Rk

Some loose assumptions (e.g. square-integrable with respect to the ν measure, i.e. finite moments,
bounded...)
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How do we learn? The loss functional

L[f ] = Eν
[

l
(

f (x), f ∗(x)
)]

The metric that tells us how good our predictions are

The function l(·, ·) is a given expression, e.g. regression loss, logistic loss, etc
In this lecture, typically it is the L2 norm: ‖f − f∗‖L2(X ,ν)
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Learning goal

Goal: predict f ∗ from a finite i.i.d. sample of points sampled from ν

Sample:
{

xi, f ∗(xi)
}

i=1,...,n
, xi ∼ ν

For each of the points xi, we know the value of the unknown function (our true labels)
We want to interpolate for any arbitrary x inbetween the labelled xi...
...in million of dimensions!

Images by Victor Lavrenko
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The space of possible solutions
The space of functionals that can potentially solve the problem is vast: F ⊆

{
f : X → R

}
(hypothesis class)
We need a notion of complexity to “organize” the space
γ(f ), f ∈ F : complexity of f

It can for example be the norm, i.e. we can augment the space F with the norm
When the complexity is defined via the norm, F is highly organized: Banach space!

The simplest function according to the norm criterion is the 0 function
If we increase the complexity by increasing the norm, we obtain convex balls{

f ∈ F ; γ(f ) ≤ δ
}

=: Fδ

Convex minimization is considerably easier than non-convex minimization
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Empirical Risk Minimization

For each element of F , a measure of how well it’s interpolating the data

Empirical risk: L̂(f ) = 1
n

∑n
i=1 |f (xi)− f ∗(xi)|2

| · | is the empirical loss. If it’s the norm, then L̂(f ) is the empirical Mean Square Error
If you find an analogy with least squares method, it’s because for one variable it’s exactly that!
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Formalizing the minimization of a functional in a given space

Constraint form: min
f∈Fδ

L̂(f ).

Not trivial

Penalized form: min
f∈F

L̂(f ) + λγ(f ).

More typical
λ is the price to pay for more complex solutions. Depends on the complexity measure

Interpolant form: min
f∈F

γ(f ) s.t. L̂(f ) = 0 ⇐⇒ f (xi) = f ∗(xi) ∀i

In ML, most of the times there is no noise, so f (xi) is exactly the value we expect there (i.e. we really
know that xi is of a given class, without any uncertainty)
The interpolant form exploits this (“give me the least complex elements in F that interpolates” )

These forms are not completely equivalent. The penalized form to be solved requires
averaging a full set of penalized forms, so it’s not completely equivalent

There is certainly an implicit correspondence between δ and λ (the larger λ, the smaller δ and
viceversa)
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The Fundamental Theorem of Machine Learning

We want to relate the result of the empirical risk minimization (ERM) with the prediction
Let’s use the constraint form

Let’s assume we have solved the ERM at a precision ε (we are ε-away from...)
we then have f̂ ∈ Fδ such that L̂(f̂ ) ≤ ε+ minf∈Fδ L̂(f )

How good is f̂ at predicting f ∗? In other words, what’s the true loss?
Can use the triangular inequality

L(f̂ )− inf
f∈F

L(f ) ≤ inf
f∈Fδ

L(f )− inf
f∈F

L(f ) Approximation error

(how appropriate is my measure of complexity)

+2 sup
f∈Fδ

∣∣∣L(f )− L̂(f )
∣∣∣ Statistical error

(impact of having the empirical loss instead of the true loss)

+ε Optimization error
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The Error Market

The minimization is regulated by the parameter δ (the size of the ball in the space of functions)
Changing δ results in a tradeoff between the different errors

Very small δ makes the statistical error blow up

We are better at doing convex optimization (easier to find minimum), but even then the
optimization error ε will not be negligible

ε: how much are ou willing to spend in resources to minimize L̂(f )
We kind of control it!
If the other errors are smaller than ε, then it makes sense to spend resources to decrease it
Otherwise, don’t bother

Bottou and Bousquet, 2008, Shalev-Shwartz, Ben-David
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The big questions

Approximation: we want to design “good” spaces F to approximate f ∗ in high-dimension
Rather profound problem, on which we still struggle

Optimization: how to design algorithms to solve the ERM in general
We essentally have ONE answer: Question Time: The Optimization Problem

Gradient Descent!
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The Curse of Dimensionality

How many samples do we need to estimate f ∗ depending on assumptions on its regularity?

Question time: Curse of Dimensionality

f ∗ constant→ 1 sample
f ∗ linear→ d samples

Space of functionals is F =
{

f : Rd → R; f (x) =< x, θ >
}
' Rd (isomorphic)

It’s essentially like solving a system of linear equations for the linear form < xi, θ
∗ >

d equations, d degrees of freedom

The reason why it’s so easy is that linear functions are regular at a global level
Knowing the function locally tells us automatically the properties everywhere
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Locally linear functions

f ∗ locally linear, i.e. f ∗ is Lipschitz
|f∗(x)− f∗(y)| ≤ β‖x− y‖
Lip(f∗) = inf

{
β; |f∗(x)− f∗(y)| ≤ β‖x− y‖ is true

}
Lip(f∗) is a measure of smoothness

Space of functionals that are Lipschitz: F =
{

f : Rd → R; f is Lipschitz
}

We want a normed space to parameterize complexity, so we convert to a Banach space
γ(f ) := max(Lip(f ), |f |∞)
The parameterization of complexity is the Lipschitz constant
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Formalization of the prediction problem

∀ε > 0, find f ∈ F such that ‖f − f ∗‖ ≤ ε from n i.i.d. samples
n: sample complexity, “how many more samples to I need to make the error a given amount of times
smaller”

If f ∗ is Lipschitz, it can be demonstrated that n ∼ ε−d

Upper bound: approximate f with its value in the closest of the sampled data points, find out expected
error ∼ ε2, upper bound is exponential
Lower bound: maximum discrepancy (the worst case scenario): unless you sample exponential
number of data points, knowing f (xi) for all of them doesn’t let youwell approximate outside
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Enough of the math?
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What’s the best function

To describe the data points?
(regression)

To separate into two classes?
(classification)

Images by Victor Lavrenko
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Avoid overtraining

From can’t remember where
Vischia Statistics for HEP March 15th and 17th, 2021 96 / 157



Simplest methods: Decision trees

Rather simple technique inspired by the standard approach of classifying events by selecting
thresholds on several variables

From http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
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Boosted decision trees)
Ada(ptive)Boost: increase at each iteration the importance of events incorrectly classified in
the previous iteration

GradientBoost: fit the new predictor to the residual errors of the previous one
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Neurons

Perceptron: simplest mathematical model of a neuron
Activation function provides nonlinearity in the response
A network of these can demonstrably approximate any (insert loose conditions here) function

From http://homepages.gold.ac.uk/nikolaev/perceptr.gif and https://i.pinimg.com/originals/e3/fa/f5/e3faf5e2a977f98db1aa0b191fc1030f.jpg
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Neural networks...

Connecting neurons into a network

Fully-connected networks: the most common a few decades ago

Each weight is a free parameter that must be determined during the “training”

Image https://www.cs.utexas.edu/ teammco/misc/mlp/mlp.png
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... and how to train them

Dataset

Training
sample

Test
sample

Application
sample

Parameterization

True label

Estimated
label

Use the
training
network
(e.g. for

inference)

Validation
and

sometimes
optimization

of the
trained
network

Loss function

Image copyright Vischia, 2019
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Loss function and backpropagation

Adjust the parameters of each neuron and connection by backpropagating the difference
between the estimated and the true output

Differentiation and matrix (tensor) operations; dedicated software, automatic differentiation
frameworks (e.g. tensorflow)

Minimization of a cost (loss) function; the loss function can be tweaked to optimize w.r.t.
several different objectives

Images from Güneş Baydin et al, JMLR 18 (2018) 1–43 and http://www.adeveloperdiary.com
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Make the training (mostly) possible

In real problems, it’s not guaranteed that a simple gradient descent can find argmin(Loss)

Several techniques to help the process to happen
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First look at your data! And sometimes preprocess them.

It may be useful to transform the input features before feeding them to the network
Heavily problem-dependent, sometimes it helps sometimes not or hinders

Imputation: if you have missing features, can replace them with some possibly meaningful
values

Vastly delicate, a field of its own. Very risky, in HEP you don’t usually need to do it

Categorical variables: use numbers only if they have a meaning!
Number of jets: OK to use 0, 1, 2. Other categorical region (e.g. “is in signal region” vs “is in control
region”) must use one-hot encoding: [[1,0], [0, 1]]

Range reduction: it is difficult for a ML algorithm to learn across vastly different ranges
Take the logarithm (useful in particular for the target labels)
Minmax scaling (transform each feature so that it is in a given range (e.g. from [0, 5000] to [0,1])
Standardization (transform each event xi by (xi − µ)/σ), where µ and σ are mean and variance of xi.
Or other similar transformations)

Rotate to privileged directions can help ML algorithms to avoid learning these privileged
directions first

PCA: find a new basis of the space while minimizing average square distance of points to each vector
of the basis (the individual dimensions of the data will be linearly uncorrelated)
This merely saves you learning cycles (the ML algoritm will eventually learn the transformation before
learning actual characteristics of the features, it will just take longer)
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Choose sampling scheme for loss and backpropagation

Batch: compute on the whole training set (for large sets becomes too costly)

Stochastic: compute on one sample (large noise, difficult to converge)

Mini-batch: use a relatively small sample of data (tradeoff)

Image from a talk by W. Verbeke
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Choose your activation function wisely
tanh and sigmoid used a lot in the past

Seemed desirable to constrain neuron output to [0, 1]
For deep networks, vanishing gradients
sigmoid still used for output of the networks (outputs interpretable as probability)

ReLU: a generally good choice for modern problems
Tricky cases may require variants

Images from a talk by W. Verbeke (likely original source wikipedia or something)
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Improve algorithm to follow the gradient

Mostly nonconvex optimization: very complicated problem, convergence in general not
guaranteed

Nesterov momentum: big jumps followed by correction seem to help!

Adaptive moments: gradient steps decrease when getting closer to the minimum (avoids
overshooting)

Nesterov Video
Diagram by Geoffrey Hinton, animation by Alec Radford
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Regularization
Batch normalization

Normalize (transform by (x− x̄)/var(x)) each input coming from previous layer over the (mini-)batch
Stabilizes response and reduces dependence among layers

Dropoup: randomly shut down nodes in training
Avoids a weight to acquire too much importance
Inspired in genetics

Images from a talk by W. Verbeke (likely originally #theInternet) and from Goodfellow-Bengio-Courville book

Vischia Statistics for HEP March 15th and 17th, 2021 108 / 157

https://agenda.irmp.ucl.ac.be/event/3738/
https://www.deeplearningbook.org/contents/regularization.html


Computing derivatives in computer programs

1 Manual calculation, followed by explicit coding
2 Symbolic differentiation with expression manipulation (e.g. Mathematica)
3 Numerical differentiation with finite-difference approximations
4 Automatic (algorithmic) differentiation (AD): autodiff

Question Time: Best Differentiation
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Manual differentiation
Manual calculation, followed by explicit coding

Time consuming and prone to error, require a closed-form model

Image from Güneş Baydin et al, JMLR 18 (2018) 1–43
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Symbolic differentiation
Symbolic differentiation with expression manipulation (e.g. Mathematica, Theano)

Complex expressions, require a closed-form model
Sometimes can just minimize the problem without requiring derivative calculation
Nested duplications produce exponentially large symbolic expressions (expression swell, slow to
evaluate)

Image from Güneş Baydin et al, JMLR 18 (2018) 1–43
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Standard numerical differentiation
Numerical differentiation with finite-difference approximations

Rounding errors and truncation errors can make it very inaccurate
Mitigation techniques that cancel first-order errors are computationally costly
Accuracy must be traded off for performance for high dimensionalities

Image from Güneş Baydin et al, JMLR 18 (2018) 1–43
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Automatic differentiation
Automatic (algorithmic) differentiation (AD): autodiff

Class of techniques to generate numerical derivative evaluations during code execution rather than
derivative expressions
Accurate at machine precision with small constant overhead and asymptotic efficiency
No need to rearrange the code in a closed-form expression
Reverse AD generalizes the common chain-rule-based neural network backpropagation

Image from Güneş Baydin et al, JMLR 18 (2018) 1–43
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The power of autodifferentiation

Image from Güneş Baydin et al, JMLR 18 (2018) 1–43
Vischia Statistics for HEP March 15th and 17th, 2021 114 / 157

https://jmlr.org/papers/v18/17-468.html


The two modes of autodiff

Forward mode
Associate with each intermediate vi a
derivative
v̇ = ∂vi

∂x1

Apply the chain rule

Single pass for f : R→ Rn

n passes for f : Rn → R

Reverse mode
Associate with each intermediate vi an
adjoint
v̄ =

∂yj
∂vi

Run forwards and backwards as in
backpropagation

Single pass for f : Rn → R
(functions with many inputs)

Must store several values

Vischia Statistics for HEP March 15th and 17th, 2021 115 / 157



Applications of autodiff computation

Generative
Models

Statistical
Inference

Experiment
Design

Automatic
Differentiation
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Using deep neural networks is not always necessary

Each realization of a machine learning algorithm has a certain complexity
Capacity can be defined as the upper bound to the number of bits that can be stored in the
network during learning

Transfer of (Fisher or Shannon) information from the training data to the weights of the synapses

Sometimes the problem does not need the capacity of a neural network, and simpler
algorithms are enough

Identifying true leptons from leptons produced in b hadron decays is an example

Plot from Baldi and Vershynin, arXiv:1901.00434
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Separate prompt from fake leptons...

Image edited from David Curtin’s talk at MC4BSM-2014
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...is not very difficult

Baseline algorithms: select particular ranges of
discriminant observables

BDT-based MVA ID improves substantially w.r.t
baseline algorithms

Plots by S.S. Cruz

Table by Víctor Rodríguez Bouza

Deep neural network (DNN) does
not help much w.r.t. BDT

Plots by Antonio Márquez García



Sometimes complexity is not the main point

Neural networks can approximate any continuous real-valued function

A feed-forward network with sigmoid activation functions can approximate any continuos
real-valued function. Cybenko, G. (1989)

Any failure in mapping a function comes from inadequate choice of weights or insufficient
number of neurons. Hornik et al (1989), Funahashi (1989)

Derivatives can be approximated as well as the functions, even in case of non-differentiability
(e.g. piecewise differentiable functions). Hornik et al (1990)

These results are valid even with other classes of activation functions. Light (1992),
Stinchcombe and White (1989), Baldi (1991), Ito (1991), etc

Neural networks can be used to build fully invertible models

The backpropagation algorithm is a special case of automatic differentiation

A fully invertible model is a powerful tool that can be used for many frontier applications in
particle physics
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Difficult tasks for humans may be easy for artificial networks

Image by Pietro Vischia

Vischia Statistics for HEP March 15th and 17th, 2021 121 / 157



Easy tasks for humans may be very difficult for artificial networks

Image from indiatimes.com
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Sparse connectivity and receptive fields

Images from https://www.deeplearningbook.org/
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Parameter sharing and equivariance to translations

Images from https://www.deeplearningbook.org/
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The first pillar

Aggregation
Information

Likelihood

Intercomparison

Regression

Design

Residual
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Pooling and invariance for generic transformations

Images from https://www.deeplearningbook.org/
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Convolution makes it easier to learn transformations

Standard fully connected network: 8 billion matrix entries, 16 billion floating-point operations
Convolutional network: 2 matrix entries, 267960 floating-point operations

4 billion times more efficient in representing the transformation
60000 times more efficient computationally

Edge detection

Images from https://www.deeplearningbook.org/
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LeNet

LeNet (Yann LeCun 1998, http://yann.lecun.com/exdb/lenet/)

LeNet
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LeNet

LeNet (Yann LeCun 1998, http://yann.lecun.com/exdb/lenet/)

LeNet
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Learning in stages

From http://parse.ele.tue.nl/education/cluster0
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Segmentating objects
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Reconstructing jets
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End-to-end jet reconstruction

Build images by projecting different layers into a single one

Treat the result as an image with Res(idual)Net(works)

Role of tracks in jet reco from network matches physics we know

arXiv:1902.08276, S. Gleyzer’s talk at 3rd IML workshop, Priya Dwivedi
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Unsupervised learning (no data label is given)

Train two networks

Green network: tries to capture the shape of the data

Blue network: estimates the probability that an event comes from data rather than the green
network

Strategy: Green tries to fool Blue
(Javier C. says: Green is Barcelona FC, Blue is Real Madrid)

x

z

X

Z

X

Z

X

Z

From https://arxiv.org/abs/1406.2661
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Can pick elements and combine them into new images

From https://github.com/Newmu/dcgan_code/blob/master/images/faces_arithmetic_collage.pngVischia Statistics for HEP March 15th and 17th, 2021 135 / 157



If you can write a loss function for it, you can learn it

C = mathematical representation
of content
S = mathematical representation
of style
Loss = distance[ S(reference) -
S(generated image)
+ distance[ C(original image) -
C(generated image)

From https://arxiv.org/abs/1508.06576
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This person does not exist!

From https://thispersondoesnotexist.com/: try it out!
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Reduce the impact of systematic uncertainties on our results

Adversarial networks used to build pivot quantities
Quantities that are invariant in some parameter (typically a nuisance parameter representing a source
of uncertainty)

Best Approximate Mean Significance as tradeoff optimal/pivotal
Eλ(θf , θr) =Lf (θf )−λLr(θf , θr)
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From Louppe-Kagan-Cranmer, arXiv:1611.01046
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Autoencoders...

Learn how to transform an object into almost itself

From Chollet and Allaire, Deep Learning With R
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...in physics

Use it to spot objects that are different from those you
have trained on
CMS Muon Chamber detectors modelled as
geographic layered maps

Map is an image: use convolutional autoencoders
Local approach (independent layers): spot anomalies in
a layer
Regional approach (simultaneusly across the layers):
spot intra-chamber issues

From arXiv:1808.00911
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...and Variational autoencoders

Learn a space of continous representations of the inputs

From Chollet and Allaire, Deep Learning With R
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...and Variational autoencoders
“How do I transform a 1 into a 0?”
Space directions have a meaning! “four-ness”, “one-ness”

From Chollet and Allaire, Deep Learning With R
Vischia Statistics for HEP March 15th and 17th, 2021 142 / 157



...also in physics

Fast generation of collision events in a
multidimensional phase space
Balancing goodness-of-reconstruction and overlap in
latent space

B-VAE Loss = 1
M

∑M
i=1(1− B) · MSE + B · DKL.

Works better than a GAN!

Plots from arXiv:1804.03599 and arXiv:1901.00875
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We figure out images

What about adding a time component?

A single network is not complex enough for driving a car

What if we permit a network to modify itself?
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Deep Q Learning...

Reinforcement Learning

“Q” is the letter denoting the reward function for an action

By Megajuice - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=57895741
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...is what you do to train your pets

Q

From The Auckland Dog Coach

https://www.theaucklanddogcoach.co.nz/positive-reinforcement/


From videogames...

ATARI Blackout (Google Deep Mind)

https://deepmind.com/research/dqn/
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...to self driving cars...

https://www.youtube.com/watch?v=MqUbdd7ae54

Build your own simulated driver: http://selfdrivingcars.mit.edu/deeptraffic/
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...to physics
Boosted objects decay to collimated jets reconstructed as single fat jet
Fat jet grooming: remove soft wide-angle radiation not associated with the underlying hard
substructure

Images from arXiv:1903.09644Vischia Statistics for HEP March 15th and 17th, 2021 149 / 157
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Learn sequences

Recurrent architectures insert a “time” component: learn sequences!
In general a dimension that is supposed to be ordered (time, position of words in a sentence, etc)

Can even learn how to generate Shakespearian text
With Markov Chains, the results are rather worse:
https://amva4newphysics.wordpress.com/2016/09/20/hermione-had-become-a-bit-pink/

From https://www.deeplearningbook.org/ and https://www.tensorflow.org/tutorials/text/text_generation
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Identifying jets from b quarks...

Quarks produced in proton-proton collisions give rise
to collimated “jets” of particles

Bottom quarks travel for a while before fragmenting
into jets

Plot from D0
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...requires combining image and sequential processing!

b tagging at CMS
CSV (Run I and early Run II): BDT sensitive to secondary
vertexes

DeepCSV: similar inputs, generic DNN
Domain knowledge can inform the representation used!

Leading criterion for choice of technique for the classifier

What is the best representation for jets?
Convolutional networks for images
Particle-based structure

CMS DeepJet, plot from Emil Bols’ talk at IML workshop
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Learn graph of the underlying structure...

From Peter Battaglia’s talk at the IML2020 Workshop
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...until the structure is learned

Water
Video from https://sites.google.com/view/learning-to-simulate
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Tracking

Graph networks to literally connect the dots

The HEP.TrkX project, S. Gleyzer’s talk at 3rd IML workshop
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High-granularity calorimeter
600m2 of sensors, 50 layers: 6 million cells with ∼3mm spatial resolution

Some square cells, some exagonal cells
Non-projective geometry

Image from a talk by André David and the HGCAL team
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Backup
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Object ID
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BDTs for object identification: the case of H→ γγ

Object identification done with ML techniques since the Higgs discovery

Classification problem (e.g. real photons vs objects misidentified as photons)
γ identification score for the lowest-score

photons

BDT score of the photon ID
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Object ID enters the era of mathematical representations — 1

Identification of jets from bquarks (b tagging) at CMS
CSV (Run I and first part of Run II): BDT sensitive to the
presence of secondary vertices

DeepCSV: similar inputs, generic DNN
Domain knowledge informs the choice of the better
mathematical representation

Main criterion to choose the classification technique

What’s the best representation for jets?
Convolutional networks for images
Structure based on individual particles

CMS DeepJet, plot from Emil Bols’ talk at IML workshop

Vischia Statistics for HEP March 15th and 17th, 2021 161 / 157

https://indico.cern.ch/event/766872/


Object ID enters the era of mathematical representations — 2

Clear gain even with respect to using a generic DNN (DeepCSV)

CMS DeepJet
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Combining MVA ID for object identification

Dedicated BDT, one score for each event, representing the mass resolution of the diphoton
system

The photon ID BDT output is used as an input
High score for diphoton pairs with kinematic properties similar to signal, good mass resolution, and
high individual γ ID score

Validated in Z→ ee events where electrons are reconstructed as photons

Transformed score of the diphoton BDT
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End-to-end reconstruction of jets

Project detector layers in a single map

Treat as an image: Res(idual)Net(works)

Role of tracks in the reconstruction by the network is the same as
we expect from the physics we know

arXiv:1902.08276, S. Gleyzer’s talk at 3rd IML workshop, Priya DwivediVischia Statistics for HEP March 15th and 17th, 2021 164 / 157
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Signal extraction
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Separate signal from background using selection cuts
High fraction of correct events in ttH categories by removing events from the dataset
Delicate: removing events based on MVA output introduces tricky dependency on simulation

Dangerous, e.g. prevents from using unfolding results in comparisons with non-SM processes
In both channels, remove events with low diphoton-BDT score

Threshold optimized simultaneously with γγ-ID score, maximizing expected precision on signal
strength

ttH leptonic

≥ 1 e/µ

≥ 2 jets

≥ 1 btagged jet

ttH hadronic

≥ 3 jets

≥ 1 btagged jet

0 e/µ

BDT classifier (inputs: Njets, pleadjet
T , lead and

sublead btag scores)
BDT score of the ttH Hadronic MVA
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Separate signal from background using all events
Increase sensitivity by keeping the full MVA score distribution, possibly separating it into
regions

Different fraction of signal/background
Constrain normalization or uncertainties in background-dominated regions

From ttH (bb), CMS-PAS-HIG-16-004Vischia Statistics for HEP March 15th and 17th, 2021 167 / 157



Unknown parameters? Parameterized Machine Learning can help you!

Classifier sensitive to the value of the
parameter

Train using as an input the true value of the
parameter (signal) or a random value
(background)
Evaluate in slices at fixed values of the
parameter

Equal or better than training for individual
values, and permits interpolation!
We already use it!!

First application in: CMS-HIG-17-006
Recent application:
CMS-HIG-18-004, arXiv:1908.09206 ,
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From Baldi et al. arXiv:1601.07913
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Different techniques are “better” for different situations

Each classification or regression problem is a distinct problem
Choice of the algorithm dictated e.g. by the structure of data and the complexity of the problem
(network capacity)

Sometimes not trivial: CMS-HIG-18-004, arXiv:1908.09206 ,
20–40% improvement w.r.t. single-variable result (HT ) usando BDT (single lepton) and parameterized
DNN (dilepton)
DNN: more sensitive at low mass, where the BDT has not enough capacity to discriminate similar
topologies (tt vs H±)
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Reduce complexity: how many BDTs do you have?

ttH multilepton: two different classifiers
BDT1: ttH vs tt
BDT2: ttH vs ttV

Finely partition the 2D plane (BDT1, BDT2)
Use a training sample to calculate binning
Apply to the application sample used for
inference

Define the target Nbins with clustering
techniques (k-means)
Finally separate regions based on empirical
likelihood

Likelihood ratio approximated by S
B

Ordering from the Neyman-Pearson lemma
Quantile-based binning

BDT classifier output (2LSS)

Final 1D discriminator (2LSS)
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CMS-PAS-HIG-17-004, part of CMS-HIG-17-018: evidence for ttH production in multilepton final states
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End-to-end event classification

Low-level data representation
Tracker, electromagnetic calorimeter,
hadronic calorimeter
Various possible geometries

Mass decorrelation to avoid structure
sculpting

Transform Eγγ in units of Mγγ
Extension of pivoting technique

Training with a 3-classes ResNet
(H→ γγ, γγ, γ+jet)

Statistically-limited technique

From arXiv:1807.11916Vischia Statistics for HEP March 15th and 17th, 2021 171 / 157
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What if you don’t know your signal?
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Gaussian processes)
Multivariate gaussian associated to a set of
random variables (Ndim = Nrandom variables)

Kernel as a similarity measure between bin
centers (counts) and a averaging function

Signal is not parameterized
Hyperparameters fixed by the B-only fit

S: residual of B-subtraction

AMVA4NewPhysics deliverable 2.5 public report

Inverse Bagging

Data: mixture model with small S
Classification based on sample properties

Compare bootstrapped samples with
reference (pure B)
Use Metodiev theorem to translate inference
into signal fraction

Validate with LR y LDA
Promising results
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Vischia-Dorigo arXiv:1611.08256, doi:10.1051/epjconf/201713711009, and P.

Vischia’s talk at EMS2019
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What about the uncertainties?
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Can we reduce the impact of uncertainties on our results?

Adversarial networks used to build pivot quantities
Quantities invariant in some parameter (typically nuisance parameter representing an uncertainty)

Best Approximate Mean Significance as tradeoff optimal/pivotal
Eλ(θf , θr) =Lf (θf )−λLr(θf , θr)
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From Louppe-Kagan-Cranmer, arXiv:1611.01046
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Reminder: likelihood function and Fisher information
The (second) derivative of the likelihood function is connected to the quantity of information
you can extract from data

I(θ) = −E

[
∂2lnL
∂θ2

]
= E

[(
∂lnL
∂θ

)2]
The likelihood function contains all the information that you can extract from data on the
parameter θ
A narrow likelihood function carries more information than a broader one
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From Vischia, book in preparation
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INFERNO: inference-aware neural optimization
Build non-parametric likelihood function based on simulation, use it as summary statistic
Minimize the expected variance of the parameter of interest

Obtain the Fisher information matrix with automatic differentiation, and use it as loss function
For (asymptotically) unbiased estimators, Rao-Cramér-Frechet (RCF) bound V[θ̂] ∼ 1

θ̂
(see my Monday lesson)
Constraints via auxiliary measurements (typically on nuisance parameters) included in covariance
matrix out of the box

From De Castro-Dorigo, arXiv:1806.04743, and AMVA4NewPhysics deliverable 1.4 public report
Vischia Statistics for HEP March 15th and 17th, 2021 177 / 157

https://arxiv.org/abs/1806.04743


Which data should we take?
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What if we don’t know which data to take?
Represent data as geographically-organized images

Local focus: detector layers treated independently
Regional focus: detector layers treated independently
but simultaneously (spot problems between layers)

Autoencoders (noise detection, dimensionality
reduction)

Encode the inputs to the hidden layer
Decode the hidden layer to an approximate
representation of the inputs

From arXiv:1808.00911
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Tracking

Graph networks to literally connet the dots

The HEP.TrkX project, S. Gleyzer’s talk at 3rd IML workshop
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What if you need to do it quickly?

Real-time event processing requires
low-latency and low-power-consumption
hardware: FPGAs

Case study: classify structures inside jets
(jet substructure)

Compression, quantization, parallelization
digital signal processing (arithmetic) blocks
(DSPs),

From arXiv:1804.06913
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