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Sadly, another year online

I hope we go back to in-person courses soon!
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Practicalities

Schedule: two days × two hours
This has evolved to being an excerpt from a longer course (about 10h)

You can find additional material, as well as a set of exercises, at
https://agenda.irmp.ucl.ac.be/event/4097/
The exercises, in particular, are designed to show the inner workings of several techniques: try to run
them! You can find them at https://github.com/vischia/intensiveCourse_public

Many interesting references, nice reading list for your career
Papers mostly cited in the topical slides
Some cool books cited here and there and in the appendix

These slides include some material that we won’t able to cover today
Mostly to provide some additional details without having to refer to the full course
Slides with this advanced material are those with the title in red

Unless stated otherwise, figures belong to P. Vischia for inclusion in my upcoming textbook on
Statistics for HEP
(textbook to be published by Springer in 2021)

Or I forgot to put the reference, let me know if you spot any figure obviously lacking reference, so that
I can fix it
I cannot put the recordings publicly online as “massive online course”, so I will distribute them only to
registered participants, and have to ask you to not record yourself. I hope you understand.

Your feedback is crucial for improving these lectures (a feedback form will be provided at the
end of the lectures)!

You can also send me an email during the lectures: if it is something I can fix for the next day, I’ll
gladly do so!
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The Interactive Element

I will pop up every now and then some questions

I will open a link, and you’ll be able to answer by going to www.menti.com and inserting a code
Totally anonymous (no access even for me to any ID information, not even the country): don’t
be afraid to give a wrong answer!

The purpose is making you think, not having 100% correct answers!

First question of the day is purely a logistics matter
Question time: ROOT

The direct links are accessible to me only: you’ll see in your screens the code in a second :)

The slides of each lecture will be available one minute after the end of the lecture
To encourage you to really try answering without looking at the answers
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General outline of the lectures

Fundaments
Bayesian and frequentist probability, theory of measure, correlation and causality, distributions

Point and Interval estimation
Maximum likelihood methods, confidence intervals, most probable values, credible intervals

Advanced interval estimation, test of hypotheses
Interval estimation near the physical boundary of a parameter
Frequentist and Bayesian tests, CLs, significance, look-elsewhere effect, reproducibility crysis

Commonly-used methods in particle physics
Unfolding, ABCD

Machine Learning
Overview and mathematical foundations, generalities most used algorithms, automatic Differentiation
and Deep Learning
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Why statistics?
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Statistics is all about answering questions...

What is the chance of obtaining a 1 when throwing a six-faced die?

We can throw a dice 100 times, and count how many times we obtain 1

What is the chance of tomorrow being rainy?

We can try to give an answer based on the recent past weather, but we cannot – in general – repeat
tomorrow and count
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...and about making sure to be posing them in a meaningful way

Image from “The Tiger Lillies” Facebook page
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Where does statistics live

Theory
Approximations
Free parameters
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Estimate parameters
Quantify uncertainty in the
parameters estimate
Test the theory!
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Random fluctuations
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(detector effects, etc)
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Fundaments
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What is a “probability”? — Kolmogorov and set theory

Ω: set of all possible elementary (exclusive) events Xi

Exclusivity: the occurrence of one event implies that
none of the others occur
Probability then is any function that satisfies the
Kolmogorov axioms:

P(Xi) ≥ 0, ∀i
P(Xi or Xj) = P(Xi) + P(Xj)∑

Ω P(Xi) = 1

Andrey Kolmogorov.
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What is a “probability”? — Cox and Jaynes

Cox postulates: formalize a set of axioms starting from reasonable premises
doi:10.1119/1.1990764

Notation
A|B the plausibility of the proposition A given a related proposition B
∼ A the proposition “not-A”, i.e. answering “no” to “is A wholly true?”
F(x, y) a function of two variables
S(x) a function of one variable

The two postulates are
C · B|A = F(C|B · A, B|A)
∼ V|A = S(B|A), i.e. (B|A)m + (∼ B|A)m = 1

Cox theorem acts on propositions, Kolmogorov axioms on sets
Jaynes adheres to Cox’ exposition and shows that formally this is equivalent to Kolmogorov
theory

Kolmogorov axioms somehow arbitrary
A proposition referring to the real world cannot always be viewed as disjunction of propositions from
any meaningful set
Continuity as infinite states of knowledge rather than infinite subsets
Conditional probability not originally defined
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Frequentist probability - 1

The most familiar one: based on the possibility of repeating an experiment many times

Consider one experiment in which a series of N events is observed.

n of those N events are of type X

Frequentist probability for any single event to be of type X is the empirical limit of the
frequency ratio:

P(X) = limN→∞
n
N
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Frequentist probability - 2

The experiment must be repeatable in the same conditions
The job of the physicist is making sure that all the relevant conditions in the experiments are
the same, and to correct for the unavoidable changes.

Yes, relevant can be a somehow fuzzy concept

In some cases, you can directly build the full table of frequencies (e.g. dice throws, poker)

What if the experiment cannot be repeated, making the concept of frequency ill-defined?
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Random experiment
Repeat a random experiment ξ (e.g. toss of a die) many times under uniform conditions

As uniform as possible
~S: set of all a priori possible different results of an individual measurement
S: a fixes subset of~S

If in an experiment we obtain ξ ∈ S, we will say the event defined by ξ ∈ S has occurred
We assume that S is simple enough that we can tell whether ξ is in it or not

Throw a die: ~S = {1, 2, 3, 4, 5, 6}
If S = {2, 4, 6}, then ξ ∈ S corresponds to the event in which you obtain an even number of points

Repeat the experiment: among n repetitions the event has occurred ν times
Then ν

n is the frequency ratio of the event in the sequence of n experiments

Question time: Frequency Ratio

This afternoon: obtain the answer by simulation!
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Subjective (Bayesian) probability

Based on the concept of degree of belief
P(X) is the subjective degree of belief on X being true

De Finetti: operative definition of subjective probability, based on the concept of coherent bet
We want to determine P(X); we assume that if you bet on X, you win a fixed amount of money if X
happens, and nothing (0) if X does not happen
In such conditions, it is possible to define the probability of X happening as

P(X) :=
The largest amount you are willing to bet

The amount you stand to win
(1)

Coherence is a crucial concept
You can leverage your bets in order to try and not loose too much money in case you are wrong
Your bookie is doing a Dutch book on you if the set of bets guarantees a profit to him
You are doing a Dutch book on your bookie if the set of bets guarantees a profit to you
A bet is coherent if a Dutch book is impossible

This expression is mathematically a Kolmogorov probability!
Subjective probability is a property of the observer as much as of the observed system

It depends on the knowledge of the observer prior to the experiment, and is supposed to change
when the observer gains more knowledge (normally thanks to the result of an experiment)

Book Odds Probability Bet Payout
Trump elected Even (1 to 1) 1/(1 + 1) = 0.5 20 20 + 20 = 40
Clinton elected 3 to 1 1/(1 + 3) = 0.25 10 10 + 30 = 40

0.5 + 0.25 = 0.75 30 40
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Conditional probabilities: Bayes theorem

Interestingly, Venn diagrams were the basis of Kolmogorov approach (Jaynes, 2003)
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A word of advice about conditional probabilities

Conditional probabilities are not commutative! P(A|B) 6= P(B|A)

Example:
speak English: the person speaks English
have TOEFL: the person has a TOEFL certificate

The probability for an English speaker to have a TOEFL certificate,
P(have TOEFL|speak English), is very small (<< 1%)

The probability for a TOEFL certificate holder to speak English,
P(speak English|have TOEFL), is (hopefully) >>>>> 1% ,
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Understanding conditioning can help even in marketing campaigns

From https://www.reddit.com/r/dataisugly/comments/boo6ld/when_venn_diagram_goes_wrong/
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Bayes Theorem and the Law of Total Probability

Bayes Theorem (1763)1:

P(A|B) :=
P(B|A)P(A)

P(B)
(2)

Valid for any Kolmogorov probability

The theorem can be expressed also by first starting from a subset B of the space

Decomposing the space S in disjoint sets Ai (i.e. ∩AiAj = 0∀i, j), ∪iAi = S an expression can
be given for B as a function of the Ais, the Law of Total Probability:

P(B) =
∑

i

P(B ∩ Ai) =
∑

i

P(B|Ai)P(Ai) (3)

where the second equality holds only for if the Ais are disjoint

Finally, the Bayes Theorem can be rewritten using the decomposition of S as:

P(A|B) :=
P(B|A)P(A)∑
i P(B|Ai)P(Ai)

(4)

1Actually the Bayesian approach has been mainly developed and popularized by Pierre Simon de Laplace
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A Diagnosis problem

The Bayes theorem permits to “invert” conditional probabilities, and can be applied to any
Kolmogorov probability, therefore in particular to both frequentist and Bayesian defintions
Let’s consider a mortal disease, and label the possible states of the patients

D: the patient is diseased (sick)
H: the patient is healthy

Let’s imagine we have devised a diagnostic test, characterized by the possible results
+: the test is positive to the disease
-: the test is negative to the disease

Imagine the test is very good in identifying sick people: P(+|D) = 0.99, and that the false
positives percentage is very low: P(+|H) = 0.01

You take the test, and the test is positive. Do you have the disease? Question time: Testing a
Disease

By the Bayes Theorem:

P(D|+) =
P(+|D)P(D)

P(+)
=

P(+|D)P(D)

P(+|D)P(D) + P(+|H)P(H)
(5)

We need the incidence of the disease in the population, P(D)! Back to question time: Testing
a Disease

It turns out P(D) is a very important to get our answer
P(D) = 0.001 (very rare disease): then P(D|+) = 0.0902, which is fairly small
P(D) = 0.01 (only a factor 10 more likely): then P(D|+) = 0.50, which is pretty high
P(D) = 0.1: then P(D|+) = 0.92, almost certainty!
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Bayes Theorem and Subjective Probability

Frequentist and Subjective probabilities differ in the way of interpreting the probabilities that
are written within the Bayes Theorem
Frequentist: probability is associated to sets of data (i.e. to results of repeatable experiments)

Probability is defined as a limit of frequencies
Data are considered random, and each point in the space of theories is treated independently
An hypothesis is either true or false; improperly, its probability can only be either 0 or 1. In general,
P(hypothesis) is not even defined
“This model is preferred” must be read as “I claim that there is a large probability that the data that I
would obtain when sampling from the model are similar to the data I already observed”2

We can only write about P(data|model)

Bayesian statistics: the definition of probability is extended to the subjective probabilty of
models or hypotheses:

P(H|~X) :=
P(~X|H)π(H)

P(~X)
(6)

2Typically it’s difficult to estimate this probability, so one reduces the data to a summary statistic S(data) with known distribution,
and computes how likely is to see S(datasampled) = S(dataobs) when sampling from the model
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The elements of the Bayes Theorem, in Bayesian Statistics

P(H|~X) :=
P(~X|H)π(H)

P(~X)
(7)

~X, the vector of observed data
P(~X|H), the likelihood function, which fully summarizes the result of the experiment
(experimental resolution)
π(H), the probability of the hypothesis H. It represents the probability we associate to H
before we perform the experiment
P(~X), the probability of the data.

Since we already observed them, it is essentially regarded as a normalization factor
Summing the probability of the data for all exclusive hypotheses (by the Law of Total Probability),∑

i P(~X|Hi) = 1 (assuming that at least one Hi is true).
Usually, the denominator is omitted and the equality sign is replaced by a proportionality sign

P(H|~X) ∝ P(~X|H)π(H) (8)

P(H|~X), the posterior probability; it is obtained as a result of an experiment
If we parameterize H with a (continuous or discrete) parameter, we can use the parameter as
a proxy for H, and instead of writing P(H(θ)) we write P(θ) and

P(θ|~X) ∝ P(~X|θ)π(θ) (9)

The simplified expression is usually used, unless when the normalization is necessary
“Where is the value of θ such that θtrue < θc with 95% probability?”; integration is needed and the
normalization is necessary
“Which is the mode of the distribution?”; this is independent of the normalization, and it is therefore
not necessary to use the normalized expression
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The problem of choosing a prior in Bayesian statistics

There is no golden rule for choosing a prior
Objective Bayesian school: it is necessary to write a golden rule to choose a prior

Usually based on an invariance principle

Consider a theory parameterized with a parameter, e.g. an angle β
Before any experiment, we are Jon Snow about the parameter β: we know nothing

We have to choose a very broad prior, or better uniform, in β

Now we interact with a theoretical physicist, who might have built her theory by using as a
parameter of the model the cosine of the angle, cos(β)

In a natural way, she will express her pre-experiment ignorance using an uniform prior in cos(β).
This prior is not constant in β!!!
In general, there is no uniquely-defined prior expressing complete ignorance or ambivalence in both
parameters (β and cos(β))

We can build a prior invariant for transformations of the parameter, but this means we have to
postulate an invariance principle

The prior already deviates from our degree of belief about the parameter (“I know nothing”)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2000

4000

6000

8000

10000

Sa
m

pl
es

Sample from uniform pdf in 

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
cos( )

0

2500

5000

7500

10000

12500

15000

17500

20000
Sa

m
pl

es

Distribution of cos( ) where  is sampled from a uniform prior

Vischia Statistics for HEP March 15th and 17th, 2021 24 / 128



Choosing a prior in theory

Two ways of solving the situation
Objective Bayes: use a formal rule dictated by an invariance principle
Subjective Bayes: use something like elicitation of expert opinion

Ask an expert her opinion about each value of θ, and express the answer as a curve
Repeat this with many experts
100 years later check the result of the experiments, thus verifying how many experts were right, and re-calibrate
your prior
This corresponds to a IF-THEN proposition: “IF the prior is π(H), THEN you have to update it afterwards, taking
into account the result of the experiment”

Central concept: update your priors after each experimient
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Choosing a prior in practice... 1/

In particle physics, the typical application of Bayesian statistics is to put an upper limit on a
parameter θ

Find a value θc such that P(θtrue < θc) = 95%

Typically θ represents the cross section of a physics process, and is proportional to a variable
with a Poisson p.d.f.

An uniform prior can be chosen, eventually restricted to θ ≥ 0 to account for the physical
range of θ
We can write priors as a function of other variables, but in general those variables will be
linked to the cross section by some analytic transformation

A prior that is uniforme in a variable is not in general uniform in a transformed variable; a uniform prior
in the cross section implies a non-uniform prior (not even linear) on the mass of the sought particle

In HEP, usually the prior is chosen uniform in the variable with the variable which is
proportional to the cross section of the process sought
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Choosing a prior in practice... 2/

Uniform priors must make sense
Uniform prior across its entire dominion: not very realistic
It corresponds to claiming that P(1 < θ ≤ 2) is the same as P(1041 < θ ≤ 1041 + 1)
It’s irrational to claim that a prior can cover uniformly forty orders of magnitude
We must have a general idea of “meaningful” values for θ, and must not accept results forty orders of
magnitude above such meaningful values

A uniform prior often implies that its integral is infinity (e.g. for a cross section, the dominion
being [0,∞]

Achieving a proper normalization of the posterior probability would be a nightmare

In practice, use a very broad prior that falls to zero very slowly but that is practically zero
where the parameter cannot meaningfully lie

This does not guarantee that it integrates to 1—it depends on the speed of convergence to zero
Improper prior
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The gist is that priors can and will impact the posterior
Associating parametric priors to intervals in the parameter space corresponds to considering
sets of theories

This is because to each value of a parameter corresponds a different theory
In practical situations, note (Eq. 9) posterior probability is always proportional to the product
of the prior and the likelihood

The prior must not necessarily be uniform across the whole dominion
It should be uniform only in the region in which the likelihood is different from zero

If the prior π(θ) is very broad, the product can sometimes be approximated with the
likelihood, P(~X|θ)π(H) ∼ P(~X|θ)

The likelihood function is narrower when the data are more precise, which in HEP often translates to
the limit N →∞
In this limit, the likelihood is always dominant in the product
The posterior is indipendent of the prior!
The posteriors corresponding to different priors must coincide, in this limit
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Flat prior
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Broad vs narrow non-flat priors
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Broad prior and narrow-vs-peaked likelihood
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Literature on priors

The authors of STAN maintain a nice set of recommendations for choosing a prior distribution
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations

It is supposed to present a balance between strongly informative priors (judged often unrealistic) and
noninformative priors

Deeply empirical recommendations
Give attention to computational constraints
A-priori dislike for invariance-principles based priors and Jeffreys priors

Not necessarily applicable to HEP without debate, but many rather reasonable perspectives
Weakly/Strongly informative depends not only on the prior but also on the question you are asking
“The prior can often only be understood in the context of the likelihood”
Weak == for a reasonably large amount of data, the likelihood will dominate
(a “weak” prior might still influence the posterior, if the data are weak)
Hard constraints should be reserved to true constraints (e.g. positive-definite parameters)
(otherwise, choose weakly informative prior on a larger range)
Check the posterior dependence on your prior, and perform prior predictive checks
doi:10.1111/rssa.12378
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Short summary on bayesian vs. frequentist

Frequentists are restricted to statements related to
P(data|theory) (kind of deductive reasoning)
The data is considered random
Each point in the “theory” phase space is treated independently (no notion of probability in the
“theory” space)
Repeatable experiments

Bayesians can address questions in the form
P(theory|data) ∝ P(data|theory)× P(theory) (it is intuitively what we normally would like to know)
It requires a prior on the theory
Huge battle on subjectiveness in the choice of the prior goes here - see §7.5 of James’ book
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Drawing some histograms
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Random Variables

Random variable: a numeric label for each element in the space of data (in frequentist
statistics) or in the space of the hypotheses (in Bayesian statistics)
In Physics, usually we assume that Nature can be described by continuous variables

The discreteness of our distributions would arise from scanning the variable in a discrete way
Experimental limitations in the act of measuring an intrinsically continuous variable)

Instead of point probabilities we’ll work with probabilities defined in intervals, normalized w.r.t.
the interval:

f (X) := lim
∆X→0

P(X)

∆X
(10)

Dimensionally, they are densities and they are called probability density functions (p.d.f. s)

Inverting the expression, P(X) =
∫

f (X)dX and we can compute the probability of an interval
as a definite interval

P(a < X < b) :=

∫ b

a
f (X)dX (11)
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Probability in the Theory of Measure — What’s a length?

Theory of probability originated in the context of games of chance

Mathematical roots in the theory of Lebesgue measure and set functions in Rn

Measure is something we want to define for an interval in Rn

1D: the usual notion of length
2D: the usual notion of area
3D: the usual notion of volume

Interval i = aν ≤ xν ≤ aν

L(i) =
n∏
ν=1

(bν − aν).

The length of degenerate intervals aν = bν is L(i) = 0; it does therefore not matter the interval is
closed, open, or half-open;
We set to +∞ the length of any infinite non-degenerate interval such as ]25,+∞] or [−∞, 2].

But do we connect different intervals?
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From additivity of length to probabilities

Disjoint intervals (no common point with any other)

i = i1 + ...+ in, (iµiν = 0 for µ 6= ν);

We can extend this to enumerable sequences of intervals by using the Borel lemma (ensures
we can do that)

Crucial to move from discrete sums to integrals of continuous probability functions

We can build a generalization of the Lebesgue measure Ln(S): the P-measure
1 P(S) is non-negative, P(S) ≥ 0;
2 P(S) is additive, P(S1 + ...+ Sn) = P(S1) + ...+ P(Sn) where SµSν = 0 for µ 6= ν;
3 P(S) is finite for any bounded set (crucial to define the usual probability in the domain [0, 1]

Have we already seen these three properties today?

Vischia Statistics for HEP March 15th and 17th, 2021 37 / 128



Distributions, finally!

Consider a class of non-negative additive set functions P(S) such that P(Rn) = 1; then

F(x) = F(x1, ..., xn) = P(ξ ≤ x1, ..., ξn ≤ xn)

0 ≤ F(x) ≤ 1

∆nF ≥ 0

F(−∞, x2, ..., xn) = ... = F(x1, ..., xn − 1,−∞) = 0

F(+∞, ...,+∞) = 1.

We interpret P(S) and F(x) as distribution of a unit of mass over Rn

Each Borel set carries the mass P(S)
Interpret (x as the quantity of mass allotted to the infinite interval (ξ1 ≤ x1, ..., ξn ≤ xν).
Defining the measure in terms of P(S) or F(x) is equivalent

Usually P(S) is called probability function, and F(x) is called distribution function
σ-field: a space Ω equipped with a collection of subsets containing Ω, closed by complement
and by under countable union

The original Kolmogorov approach is expressed via a σ-field built on the space of elementary
propositions (sets)
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Discrete mass points can be incorporated seamlessly

Discrete mass point a; a point such that the set {x = a} carries a positive quantity of mass.

P(S) = c1P1(S) + c2P2(S)

or

F(x) = c1F1(x) + c2F2(x)

where

cν ≥ 0, c1 + c2 = 1,

c1: component with whole mass concentrated in discrete mass points. c2: component with no
discrete mass points

c1 = 1, c2 = 0: F(x) is a step function, where the whole mass is concentrated in the
discontinuity points

c1 = 0, c2 = 1, then if n = 1 then F(x) is everywhere continuous, and in any dimension no
single mass point carries a positive quantity of mass.
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Probability density

Consider the n-dimensional interval i = {xν − hν < ξν ≤ xν + hν ; ν = 1, ..., n}
Average density of mass: the ratio of the P-measure of the interval—expressed in terms of
the increments of the point function—to the L-measure of the interval itself

P(i)
L(i)

=
∆nF

2nh1h2...hn
.

If partial derivatives f (x1, ..., xn) = ∂nF
∂x1...∂xn

exist, then P(i)
L(i) → f (x1, ..., xn) for hν → 0

Density of mass at the point x
f is referred to as probability density or frequency function
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Marginal distributions

Take a distribution function F(x1, ..., xn)

Let xµ →∞, µ 6= ν

It can be shown that F → Fν(xν), and that itself is a distribution function in the variable xν
e.g. F1(x1) = F(x1,+∞, ...,+∞).

Fν(xν) is one-dimensional, and is called the marginal distribution of xν .
It can be obtained by projection starting from the n−dimensional distribution
Shift each “mass particle” along the perpendicular direction to xν until collapsing into the xν axis
This results in a one-dimensional distribution which is the marginal distribution of xν .
There are infinite ways of arriving to the same xν starting from a generic n-dimensional distribution
function

Marginal distributions can be also built with respect to subsets of variables.
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p.d.f. for many variables

Extend the concept of p.d.f. to an arbitrary number of variables; the joint p.d.f. f (X, Y, ...)

If we are interested in the p.d.f. of just one of the variables the joint p.d.f. depends upon, we
can compute by integration the marginal p.d.f.

fX(X) :=

∫
f (X, Y)dY (12)

Sometimes it’s interesting to express the joint p.d.f. as a function of one variable, for a
particular fixed value of the others: this is the conditional p.d.f. :

f (X|Y) :=
f (X, Y)

fY(Y)
(13)
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Dispersion and distributions

Repeated experiments usually don’t yield the exact same result even if the physical quantity
is expected to be exactly the same

Random changes occur because of the imperfect experimental conditions and techniques
They are connected to the concept of dispersion around a central value

When repeating an experiment, we can count how many times we obtain a result contained in
various intervals (e.g. how often 1.0 ≤ L < 1.1, how often 1.1 ≤ L < 1.2, etc)

An histogram can be a natural way of recording these frequencies
The concept of dispersion of measurements is therefore related to that of dispersion of a distribution

In a distribution we are usually interested in finding a “central” value and how much the
various results are dispersed around it
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Distributions... or not?

HEP uses histograms mostly historically: counting experiments
Statistics and Machine Learning communities typically use densities

Intuitive relationship with the underlying p.d.f.
Kernel density estimates: binning assumption→ bandwidth assumption
Less focused on individual bin content, more focused on the overall shape
More general notion (no stress about the limited bin content in tails)

In HEP, if your events are then used “as counting experiment” it’s more useful the histogram
But for some applications (e.g. Machine Learning) even in HEP please consider using density
estimates

Plots from TheGlowingPython and TowardsDataScience
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Sources of uncertainty (errors?)

Two fundamentally different kinds of uncertainties
Error: the deviation of a measured quantity from the true value (bias)
Uncertainty: the spread of the sampling distribution of the measurements

Random (statistical) uncertainties
Inability of any measuring device (and scientist) to give infinitely accurate answers
Even for integral quantities (e.g. counting experiments), fluctuations occur in observations on a small
sample drawn from a large population
They manifest as spread of answers scattered around the true value

Systematic uncertainties
They result in measurements that are simply wrong, for some reason
They manifest usually as offset from the true value, even if all the individual results can be consistent
with each other
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Expected values of a random variable

We define the expected value and mathematical expectation

E[X] :=

∫
Ω

Xf (X)dX (14)

In general, for each of the following formulas (reported for continuous variables) there is a
corresponding one for discrete variables, e.g.

E[X] :=
∑

i

XiP(Xi) (15)
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Generalizing expected values to functions of random variables

Extend the concept of expected value to a generic function g(X) of a random variable

E[g] :=

∫
Ω

g(X)f (X)dX (16)

The previous expression Eq. 14 is a special case of Eq. 16 when g(X) = X

The mean of X is:
µ := E[X] (17)

The variance of X is:

V(X) := E[(X − µ)2] = E[X2]− (E[X])2 = E[X2]− µ2 (18)

Mean and variance will be our way of estimating a “central” value of a distribution and of the
dispersion of the values around it
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Let’s make it funnier: more variables!
Let our function g(X) be a function of more variables, ~X = (X1,X2, ...,Xn) (with p.d.f. f (~X))

Expected value: E(g(~X)) =
∫

g(~X)f (~X)dX1dX2...dXn = µg

Variance: V[g] = E
[
(g− µg)

2] =
∫

(g(~X)− µg)
2f (~X)dX1dX2...dXn = σ2

g

Covariance: of two variables X, Y:
VXY = E

[
(X − µX)(Y − µY)

]
= E[XY]− µXµY =

∫
XYf (X, Y)dXdY − µXµY

It is also called “error matrix”, and sometimes denoted cov[X, Y]

It is symmetric by construction: VXY = VYX , and VXX = σ2
X

To have a dimensionless parameter: correlation coefficient ρXY =
VXY
σXσY

VXY is the expectation for the product of
deviations of X and Y from their means

If having X > µX enhances P(Y > µY), and
having X < µX enhances P(Y < µY), then
VXY > 0: positive correlation!
ρXY is related to the angle in a linear
regression of X on Y (or viceversa)

It does not capture non-linear correlations
Question time: CorrCoeff
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What can you get from ρXY

Informs on the direction (co-increase, increase-decrease, none) of a linear correlation

Does NOT inform on the slope of the correlation

Several non-linear correlations yield ρXY

Figure from BND2010
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Take it to the next level: the Mutual Information
Covariance and correlation coefficients act taking into account only linear dependences
Mutual Information is a general notion of correlation, measuring the information that two
variables X and Y share

I(X; Y) =
∑
y∈Y

∑
x∈X

p(x, y)log

(
p(x, y)

p1(x)p2(y)

)
Symmetric: I(X; Y) = I(Y; X)
I(X; Y) = 0 if and only if X and Y are totally independent

X and Y can be uncorrelated but not independent; mutual information captures this!
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X = N(0,1); Y = WX; W is the Rademacher distribution Related to entropy

I(X; Y) = H(X)− H(X|Y)

= H(Y)− H(Y|X)

= H(X) + H(Y)− H(X, Y)
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Does cholesterol increase with exercise?

Question time: Cholesterol
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Does it, though?
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Should we prescribe the drug?

If we know the biological sex3, then prescribe the drug

If we don’t know the biological sex, then don’t prescribe the drug

Drug No drug
Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)

Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined 273 out of 350 recovered (78%) 289 out of 250 recovered (83%)

Question time: DrugEffectiveness

Imagine we know that estrogen has a negative effect on recovery

Then women less likely to recovery than men
Table shows women are significantly more likely to take the drug
Consult the separate data to decide on the drug, in order not to mix effects

3Biological sex: anatomy of an individual’s reproductive system, and secondary sex characteristics. Gender: either social roles
based on the sex of the person (gender role) or personal identification of one’s own gender based on an internal awareness
(https://en.wikipedia.org/wiki/Sex_and_gender_distinction)
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Should we prescribe the drug?

BP = Blood Pressure
No drug Drug

Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
High BP 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)

Combined 273 out of 350 recovered (78%) 289 out of 250 recovered (83%)

Question time: DrugEffectiveness

Same table, different labels; here we must consider the combined data

Lowering blood pressure is actually part of the mechanism of the drug effect
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The Simpson paradox: correlation is not causation

Correlation alone can lead to nonsense conclusions
Example 1: estrogen causes a different recovery
pattern

Use separate data, to avoid mixing proportion of
subjects with real drug effect

Same table, different labels; must consider the
combined data

Lowering blood pressure is actually part of the
mechanism of the drug effect

It’s the causal structure that informs whether e.g. to
pick the combined or separate data

Same effect in continuous data (cholesterol vs age)
The best solution so far are Bayesian causal networks

Graph theory to describe relationship between variables

Figures from Pearl, 2016
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First level of causal hierarchy: seeing
X and Y are marginally dependent, but conditionally independent given Z

Same concept we have seen (with a more dramatic effect) in the cholesterol example
Conditioning on Z blocks the path

Figures from Dablander, 2019
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First level of causal hierarchy: seeing
X and Y are marginally independent, but conditionally dependent given Z

Z is called a collider (not the particle physics one ,)

Conditioning on Z induces collider bias

Figures from Dablander, 2019
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Second level of causal hierarchy: doing
Interventionist approach (Pearl, 2016) (not everyone agrees with this formal approach)

X has a causal influence on Y if changing X leads to changes in (the distribution of) Y
Setting (by intervention) X = x cuts all incoming causual arrows

The value of X is determined only by the intervention
Must be able to do intervention: not mere conditioning (seeing): from P(Y|X = x) to P(Y|do(X = x))
Difficult in social sciences

Intervention discriminates between causal structure of different diagrams
Assuming that there is no unobserved confounding (i.e. all causal relationships are represented in the
DAG)

Figures from Dablander, 2019
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“Doing” applied to Simpson’s paradox

Drug No drug
Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)

Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined 273 out of 350 recovered (78%) 289 out of 250 recovered (83%)

No drug Drug
Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
High BP 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)

Combined 273 out of 350 recovered (78%) 289 out of 250 recovered (83%)

Figures from Dablander, 2019
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“Doing” is for populations
Good predictors can be causally disconnected from the effect!
The do operator operates on distributions defined on populations

Figures from Dablander, 2019
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Third level of causal hierarchy: imagining
The strongest level of causality acts on the individual

“As a matter of fact, humans constantly evaluate mutually exclusive options, only one of which ever
comes true; that is, humans reason counterfactually.”

Structural Causal Models relate causal and probabilistic statements
Treatment := εT ∼ N(0, σ)
Response := µ+ βTreatment + ε
Measure µ = 5, β = −2, σ = 2

Causal effect obscured by individual error term εi for each patient: if determined, model fully
determined
Can determine response for individual treatment!

Figures and quote from from Dablander, 2019
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The Binomial distribution

Binomial
Discrete variable: r, positive integer ≤ N
Parameters:

N, positive integer
p, 0 ≤ p ≤ 1

Probability function:
P(r) =

(N
r

)
pr(1− p)N−r , r = 0, 1, ...,N

E(r) = Np, V(r) = Np(1− p)
Usage: probability of finding exactly r
successes in N trials. The distribution of the
number of events in a single bin of a
histogram is binomial (if the bin contents are
independent)

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

Binomial p.d.f.

x
P

ro
ba

bi
lit

y 
de

ns
ity

● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

p=0.3, N=20
p=0.7, N=20
p=0.5, N=40

Example: which is the probability of obtaining 3 times the number 6 when throwing a 6-faces
die 12 times?

N = 12, r = 3, p = 1
6

P(3) =
(12

3

)( 1
6

)3
(1− 1

6 )12−3 = 12!
3!9!

1
63

(
5
6

)9
= 0.1974
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The Poisson distribution

Poisson
Discrete variable: r, positive integer
Parameter: µ, positive real number

Probability function: P(r) = µre−µ
r!

E(r) = µ, V(r) = µ
Usage: probability of finding exactly r events
in a given amount of time, if events occur at a
constant rate.

Example: is it convenient to put an
advertising panel along a road?
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µ=15

Probability that at least one car passes through the road on each day, knowing on average 3
cars pass each day

P(X > 0) = 1− P(0), and use Poisson p.d.f.

P(0) =
30e−3

0!
= 0.049787

P(X > 0) = 1− 0.049787 = 0.95021.

Now suppose the road serves only an industry, so it is unused during the weekend; Which is
the probability that in any given day exactly one car passes by the road?

Navg per dia =
3
5

= 0.6

P(X) =
0.61e−0.6

1!
= 0.32929
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The Gaussian distribution

Gaussian or Normal distribution
Variable: X, real number
Parameters:

µ, real number
σ, positive real number

Probability function:

f (X) = N(µ, σ2) = 1
σ
√

2π
exp
[
− 1

2
(X−µ)2

σ2

]
E(X) = µ, V(X) = σ2

Usage: describes the distribution of
independent random variables. It is also the
high-something limit for many other
distributions
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The χ2 distribution

Parameter: integer N > 0 degrees of
freedom

Continuous variable X ∈ R
p.d.f., expected value, variance

f (X) =
1
2

( X
2

) N
2 −1e−

X
2

Γ
(N

2

)
E[r] = N

V(r) = 2N

It describes the distribution of the sum of the
squares of a random variable,

∑N
i=1 X2

i 0 5 10 15
0.

0
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8

χ2 p.d.f.
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NDOF=1
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NDOF=5
NDOF=9

Reminder: Γ() := N!
r!(N−r)!
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Some relationships among distributions

It is often convenient to know the asymptotic properties of the various distributions

Normal Student's tMultinomial

F distributionChi square

Binomial Poisson

p→0
Np=μ

N→∞

i=2

N→∞

ν2→∞

ν1→∞
ν1→∞ν2→∞

N→∞

μ→∞N→∞
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Point and Interval estimation
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Estimating a physical quantity
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First we need a function connecting the data and our parameter

Set~x = (x1, ..., xN) of N statistically independent observations xi, sampled from a p.d.f. f (x).

Mean and width of f (x) (or some parameter of it: f (x; ~θ), with ~θ = (θ1, ..., θM) unknown)
In case of a linear p.d.f., the vector of parameters would be ~θ = (intercept, slope)

We call estimator a function of the observed data~x which returns numerical values ~̂θ for the
vector ~θ.

~̂θ is (asymptotically) consistent if it converges to ~θtrue
for large N:

lim
N→∞

~̂θ = ~θtrue

~̂θ is unbiased if its bias is zero, ~b = 0

Bias of ~̂θ: ~b := E[~̂θ]− ~θtrue

If bias is known, can redefine ~̂θ′ = ~̂θ −~b, resulting in
~b′ = 0.

~̂θ is efficient if its variance V[~̂θ] is the smallest possible Plot from James, 2nd ed.

An estimator is robust when it is insensitive to small deviations from the underlying
distribution (p.d.f.) assumed (ideally, one would want distribution-free estimates, without
assumptions on the underlying p.d.f.)

Once we have our estimate (the numerical value of the estimator for our data), can we throw
away our data?



Sufficient statistic

A test statistic is a function of the data (a quantity derived from the data sample)
When X ∼ f (X|θ), a statistic T = T(X) is sufficient for θ if the density function f (X|T) is
independent of θ

If T is a sufficient statistic for θ, then also any strictly monotonic g(T) is sufficient for θ

Minimal sufficient statistic: a sufficient statistic that is a function of all other sufficient statistics
for θ
The statistic T carries as much information about θ as the original data X

No other function can give any further information about θ
Same inference from data X with model M and from sufficient statistic T(X) with model M′

Rao–Blackwell theorem: if g(X) is an estimator for θ and T is a sufficient statistic, then the
conditional expectation of g(X) given T(X) is never a worse estimator of θ

Practical procedure: build a ballpark estimator g(X), then condition it on a T(X) to obtain a better
estimator

The Sufficiency Principle: Two observations X and Y that factorize through the same value
of T(·), i.e. s.t. T(x) = T(y), must lead to the same inference about θ

Images from AmStat magazine and from Illinois.edu
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Example of sufficient statistic

Given some data 1, 2, 3, 4, 5, you may want to estimate the population mean
Consider the sample mean x̂ = 1+2+3+4+5

5 = 3 as an estimator of the sample mean (3 is the
estimate)
Imagine we don’t have the data; we only know that the sample mean is 3
Is the sample mean a sufficient statistic? Question time: Sufficient statistic

If you only knew the sample mean of 3, you would estimate the population mean to be 3 anyway,
regardless of having the data or not
Knowing the data (the set 1, 2, 3, 4, 5) or knowing only the sample mean does not improve our
estimate for the population mean

Estimate the binomial probability of obtaining r heads in N coin tosses

Record heads and tails, with their order: HTTHHHTHHTTTHTHTH
Can we somehow improve by identifying a sufficient statistic? Question time: Sufficient Statistic
What happens if we record only the number of heads? (remember that the binomial p.d.f. is:
P(r) =

(N
r

)
pr(1− p)N−r , r = 0, 1, ...,N)

Recording only the number of heads (no tails, no order) gives exactly the same information
Data can be reduced; we only need to store a sufficient statistic (the distribution f (X|T) is
independent of θ)
Storage needs are reduced!!!
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Ancillary statistic and pivotal quantities

Pivotal quantity: its distribution does not depend on the
parameters

For a Gaus(µ, σ2) p.d.f., X̄−µ
S/
√

N
∼ tstudent is a pivot

See exercise this afternoon

Ancillary statistic for a parameter θ: a statistic f (X) which does not depend on θ
Concept linked to that of (minimal) sufficient statistic; (maximal) data reduction while retaining all
Fisher information about θ

Can an ancillary statistic can give information about θ even if it does not depend on it? QT!
Ancillary

Yes!

Sample X1 and X2 from Pθ(X = θ) = Pθ(X = θ + 1) = Pθ(X = θ + 2) = 1
3

Ancillary statistic: R := X2 − X1 (no information about θ)
Minimal sufficient statistic: M :=

X1+X2
2

Sample point (M = m, R = r): either θ = m, or θ = m− 1, or θ = m− 2
If R = 2, then necessarily X1 = m− 1 and X2 = m− 2; Therefore necessarily θ = m− 1

Knowledge of R alone carries no information on θ, but increases the precision on an estimate
of θ (Cox, Efron, Hinckley)!
Powerful tool to improve data reduction capabilities (save money...)
Also employed for asymptotic likelihood expressions

Also impact on approximate expressions for significance
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Then, we need a way of quantifying “how much” do we get from our data

The information of a set of observations should increase with the number of observations
Double the data should result in double the information if the data are independent

Information should be conditional on what we want to learn from the experiment
Data which are irrelevant to our hypothesis should carry zero information relative to our hypothesis

Information should be related to precision
The greatest the information carried by the data, the better the precision of our result
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The Likelihood Principle — Enunciation

Common enunciation: given a set of observed data~x, the likelihood function L(~x; θ) contains
all the information that is relevant to the estimation of the parameter θ contained in the data
sample

The likelihood function is seen as a function of θ, for a fixed set (a particular realization) of observed
data~x
The likelihood is used to define the information contained in a sample
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The Likelihood Principle — Bayesians and Frequentists

Bayesian statistics automatically satisfies the likelihood principle
P(θ|~x) ∝ L(~x; θ)× π(θ): the only quantity depending on the data is the likelihood
Information as a broad way of saying all the possible inferences about θ
“Probably tomorrow will rain”

Frequentist statistics: information more strictly as Fisher information (connection with
curvature of L(~x; θ))

Usually does not comply (have to consider the hypothetical set of data that might have been obtained)
Need to recast question in terms of hypotetical data
Example: tail areas from sampling distributions obtained with toys
Even in forecasts: computer simulations of the day of tomorrow, or counting the past frequency of
correct forecasts by the grandpa feeling arthritis in the shoulder
“The sentence -tomorrow it will rain- is probably true”

The Likelihood Principle is quite vague: no practical prescription for drawing inference from
the likelihood

Bayesian Maximum a-posteriori (MAP) estimator automatically maximizes likelihood
Maximum Likelihood estimator (MLE) maximizes likelihood automatically, but some foundational
issues
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The Likelihood Principle — is it profound?

Two likelihoods differing by only a normalization factor are equivalent
Implies that information resides in the shape of the likelihood

George Bernard: replace a dataset D with a dataset D + Z, where Z is the result of tossing a
coin

Assume that the coin toss is independent on the parameter θ you seek to determine
Sampling probability: p(DZ|θ) = p(D|θ)p(Z)
The coin toss tells us nothing about the parameter θ beyond what we already learn by considering D
only
Any inference we do with D must therefore be the same as any inference we do with D + Z
In particular, normalizations cancel out in ratio: L1

L2
=

p(DZ|θ1 I)
p(DZ|θ2 I) =

p(D|θ1 I)
p(D|θ2 I)

Do you believe probability comes from the imperfect knowledge of the observer?
Then the likelihood principle does not seem too profound besides the mathematical simplifications it
allows

Do you believe that probability is a physical phaenomenon arising from randomness?
Then the likelihood principle has for you a profound meaning of valid principle of inference
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Likelihood and Fisher Information
A very narrow likelihood will provide much information about θtrue

The posterior probability will be more localized than the prior in the regimen in which the likelihood
function dominates the product L(~x; ~θ)× π
Ideally we’d want to connect this with the Fisher Information, which therefore be large

A very broad likelihood will not carry much information, and ideally the computed Fisher
Information will be small
What’s a reasonable definition of Fisher Information based on the likelihood function?
Question time: Likelihood and Information
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Likelihood, Score, and Information

Score: ∂
∂θ

lnL(X; θ)

Under broad regularity conditions, if X ∼ f (x|θtrue) the expectation of the score calculated for
θ = θtrue is zero

E
[ ∂
∂θ

lnL(X; θ)|θ = θtrue

]
=

∂

∂θ

∫
f (x|θtrue)dx =

∂

∂θ
1 = 0

Fisher Information: the variance of the score

I(θ) = E
[( ∂
∂θ

lnL(X; θ)
)2
|θtrue

]
=

∫ ( ∂
∂θ

lnf (x|θ)
)2

f (x|θ)dx ≥ 0

Under some regularity conditions, and when the likelihood is twice differentiable, then you can
“exchange” the exponent and the number of derivations

I(θ) = −E
[( ∂2

∂θ2
lnL(X; θ)

)2
|θtrue

]
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Likelihood and Fisher Information

The narrowness of the likelihood can be estimated by looking at its curvature

The curvature is the second derivative with respect to the parameter of interest

A very narrow (peaked) likelihood is characterized by a very large and positive
curvature − ∂

2lnL
∂θ2

The second derivative of the likelihood is linked to the Fisher Information

I(θ) = −E

[
∂2lnL
∂θ2

]
= E

[(
∂lnL
∂θ

)2]
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Fisher Information and Jeffreys priors
When changing variable, the change of parameterization must not result in a change of the
information

The information is a property of the data only, through the likelihood—that summarizes them
completely (likelihood principle)

Search for a parametrization θ′(θ) in which the Fisher Information is constant
Compute the prior as a function of the new variable

π(θ) = π(θ′)
∣∣∣ dθ′

dθ

∣∣∣ ∝
√√√√E

[(
∂lnN
∂θ′

)2]∣∣∣∣∣∂θ′∂θ
∣∣∣∣∣

=

√√√√E

[(
∂lnL
∂θ′

∂θ′

∂θ

)2]

=

√√√√E

[(
∂lnL
∂θ

)2]
=
√

I(θ)

For any θ, π(θ) =
√

I(θ); with this choice, the information is constant under changes of
variable
Such priors are called Jeffreys priors, and assume different forms depending on the type of
parametrization

Location parameters: uniform prior
Scale parameters: prior ∝ 1

θ

Poisson processes: prior ∝ 1√
θ
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The Maximum Likelihood Method 1/
Let~x = (x1, ..., xN) be a set of N statistically independent observations xi, sampled from a
p.d.f. f (x; ~θ) depending on a vector of parameters
Under independence of the observations, the likelihood function factorizes to the individual
p.d.f. s

L(~x; ~θ) =
N∏

i=1

f (xi, ~θ)

The maximum-likelihood estimator is the ~θML which maximizes the joint likelihood

~θML := argmaxθ
(

L(~x, ~θ)
)

The maximum must be global
Numerically, it’s usually easier to minimize

− lnL(~x; ~θ) = −
N∑

i=1

lnf (xi, ~θ)

Easier working with sums than with products
Easier minimizing than maximizing

If the minimum is far from the range of permitted values for ~θ, then the minimization can be
performed by finding solutions to

−
lnL(~x; ~θ)

∂θj
= 0

It is assumed that the p.d.f. s are correctly normalized, i.e. that
∫

f (~x; ~θ)dx = 1 (→ integral does not
depend on ~θ)

Vischia Statistics for HEP March 15th and 17th, 2021 81 / 128



The Maximum Likelihood Method 2/

Solutions to the likelihood minimization are found via numerical methods such as MINOS
Fred James’ Minuit: https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html

~θML is an estimator→ let’s study its properties!
1 Consistent: limN→∞ ~θML = ~θtrue;
2 Unbiased: only asymptotically. ~b ∝ 1

N , so~b = 0 only for N →∞;
3 Efficient: V[~θML] = 1

I(θ)

4 Invariant: for change of variables ψ = g(θ); ψ̂ML = g(~θML)

~θML is only asymptotically unbiased, and therefore it does not always represent the best
trade-off between bias and variance

Remember that in frequentist statistics L(~x; ~θ) is not a p.d.f. . In Bayesian statistics, the
posterior probability is a p.d.f.:

P(~θ|~x) =
L(~x|~θ)π(~θ)∫
L(~x|~θ)π(~θ)d~θ

Note that if the prior is uniform, π(~θ) = k, then the MLE is also the maximum of the posterior
probability, ~θML = maxP(~θ|~x).
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Example: Nuclear Decay with Maximum Likelihood Method
Go through it also using the exercise!
A nuclear decay with half-life τ is described by the p.d.f., expected value, and variance

f (t; τ) =
1
τ

e−
t
τ

E[f ] = τ

V[f ] = τ 2

Sampling N independent measurements ti from the same p.d.f. results in a set of
measurements identically distributed
Exercise: compute the MLE for this p.d.f.

The joint p.d.f. can be factorized

f (t1, ...tN ; τ) =
∏

i

f (ti; τ)

For a particular set of N measurements ti, the p.d.f. can be written as a function of τ only,
L(τ) := f (ti; τ)

Now all you need to do is to maximize the likelihood

The logarithm of the likelihood, lnL(τ) =
∑(

ln 1
τ
− ti
τ

)
, can be maximized analytically

∂lnL(τ)

∂τ
=
∑

i

(
−

1
τ

+
ti
τ 2

)
≡ 0
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L(τ) := f (ti; τ)

Now all you need to do is to maximize the likelihood

The logarithm of the likelihood, lnL(τ) =
∑(

ln 1
τ
− ti
τ

)
, can be maximized analytically

∂lnL(τ)

∂τ
=
∑

i

(
−

1
τ

+
ti
τ 2

)
≡ 0
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Example: Nuclear Decay with Maximum Likelihood Method
The maximum-likelihood estimator is

τ̂(t1, ..., tN) =
1
N

∑
i

ti

It’s the simple arithmetical mean of the individual measurements!
What’s the expected value? Is the estimator unbiased? Question time: Nuclear Decay 1

The expected value is E[τ̂ ] = τ , and the estimator is unbiased:

b = E[τ̂ ]− E[f ] = τ − τ = 0

What is the variance? Which is its relationship to N? Is the estimator efficient? QT: N D 1
The variance interestingly decreases when N increases, and it is possible to demonstrate that
the estimator is efficient

V[τ̂ ] = V
[ 1

N

∑
i

ti
]

=
1

N2

∑
i

V[ti] =
τ 2

N

The MLE is not the only estimator we can think of. Fill the table!
Consistent Unbiased Efficient

τ̂ = τ̂ML = t1+...+tN
N

τ̂ = t1+...+tN
N−1

τ̂ = ti

Table: Properties of different estimators of the half life for a nuclear decay.
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1
N

∑
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the estimator is efficient

V[τ̂ ] = V
[ 1

N

∑
i

ti
]

=
1

N2

∑
i

V[ti] =
τ 2

N

The MLE is not the only estimator we can think of. Fill the table! Question time: Nuclear
Decay 2

Consistent Unbiased Efficient
τ̂ = τ̂ML = t1+...+tN

N 3 3 3

τ̂ = t1+...+tN
N−1 3 7 7

τ̂ = ti

Table: Properties of different estimators of the half life for a nuclear decay.
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Table: Properties of different estimators of the half life for a nuclear decay.

Vischia Statistics for HEP March 15th and 17th, 2021 87 / 128



Why τ̂ = ti is unbiased

Bias: b = E[τ̂ ]− τ
Note: if you don’t know the true value, you must simulate the bias of the method
Generate toys with known parameters, and check what is the estimate of the parameter for the toy
data
If there is a bias, correct for it to obtain an unbiased estimator

ti is an individual observation, which is still sampled from the original factorized p.d.f.

f (ti; τ) = 1
τ

e−
ti
τ

The expected value of ti is therefore still E[τ̂ ] = E[ti] = τ

τ̂ = ti is therefore unbiased!
Consistent Unbiased Efficient

τ̂ = ti 7 3 7

Table: Properties of different estimators of the half life for a nuclear decay.
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Bias-variance tradeoff and optimal variance 1/

We usually want to optimize both bias ~b and variance V[~̂θ]

While we can optimize each one separately, optimizing them simultaneously leads to none
being optimally optimized, in genreal

Optimal solutions in two dimensions are often suboptimal with respect to the optimization of just one
of the two properties

The variance is linked to the width of the likelihood function, which naturally leads to linking it
to the curvature of L(~x; ~θ) near the maximum

However, the curvature of L(~x; ~θ) near the maximum is linked to the Fisher information, as we
have seen

Information is therefore a limiting factor for the variance (no data set contains infinite
information, variance cannot collapse to zero)

Variance of an estimator satisfies the Rao-Cramér-Frechet (RCF) bound

V[θ̂] ≥
1

θ̂
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Information Inequality – 1

Rao-Cramer-Frechet (RCF) bound

V[θ̂] ≥ (1+∂b/∂θ)2

−E
[
∂2lnL/∂θ2

]
In multiple dimensions, link with the information is maintaned via the full Fisher Information Matrix:
Iij = E

[
∂2lnL/∂θi∂θj

]
Approximations

Neglect the bias (b = 0)
Inequality is an approximate equality (true for large data samples)

V[θ̂] ' 1
−E
[
∂2lnL/∂θ2

]
Estimate of the variance of the estimate of the parameter!

V̂[θ̂] ' 1
−E
[
∂2lnL/∂θ2

]
|
θ= ˆtheta

For a generic unbiased estimator, can define efficiency of the estimator as

e(θ̂) :=
I(θ)−1

V[θ̂]

The efficiency of a generic unbiased estimator, because of the RCF bound, is always e(θ̂) ≤ 1
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Bias-variance tradeoff and optimal variance 2/

For multidimensional parameters, we can build the information matrix with elements:

Ijk(~θ) = −E
[ N∑

i

∂2lnf (xi; ~θ)

∂θk∂θk

]
= N

∫
1
f
∂f
∂θj

∂f
∂θk

dx

(the last equality is due to the integration interval not being dependent on ~θ)
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Estimating variance non-analytically

We have calculated the variance of the MLE in the simple case of the nuclear decay

Analytic calculation of the variance is not always possible

Write the variance approximately as:

V[θ̂] ≥

(
1 + ∂b

∂θ

)2

−E
[
∂2lnL
∂θ2

]
This expression is valid for any estimator, but if applied to the MLE then we can note ~θML is
efficient and asymptotically unbiased

Therefore, when N →∞ then b = 0 and the variance approximate to the RCF bound, and ≥
becomes ':

V[~θML] '
1

−E
[
∂2lnL
∂θ2

]∣∣∣
θ=~θML

The variance is related to the curvature of the likelihood!!!
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How to extract an interval from the likelihood function 1/

Giving a point estimate without specifying a range of variation corresponding to our
uncertainty is meaningless!!!

For a Gaussian p.d.f., f (x; ~θ) = N(µ, σ), the likelihood can be written as:

L(~x; ~θ) = ln
[
−

(~x− ~θ)2

2σ2

]
Moving away from the maximum of L(~x; ~θ) by one unit of σ, the likelihood assumes the value
1
2 , and the area enclosed in [~θ − σ, ~θ + σ] will be—because of the properties of the Normal
distribution—equal to 68.3%.
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How to extract an interval from the likelihood function 2/
We can therefore write

P
(

(~x− ~θ)2 ≤ σ)
)

= 68.3%

P(−σ ≤ ~x− ~θ ≤ σ) = 68.3%

P(~x− σ ≤ ~θ ≤ ~x + σ) = 68.3%

Taking into account that it is important to keep in mind that probability is a property of sets, in
frequentist statistics

Confidence interval: interval with a fixed probability content
This process for computing a confidence interval is exact for a Gaussian p.d.f.

Pathological cases reviewed later on (confidence belts and Neyman construction)
Practical prescription:

Point estimate by computing the Maximum Likelihood Estimate
Confidence interval by taking the range delimited by the crossings of the likelihood function with 1

2 (for
68.3% probability content, or 2 for 95% probability content—2σ, etc)
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How to extract an interval from the likelihood function /3

Theorem: for any p.d.f. f (x|~θ), in the large numbers limit N →∞, the likelihood can always
be approximated with a gaussian:

L(~x; ~θ) ∝N→∞ e−
1
2 (~θ−~θML)T H(~θ−~θML)

where H is the information matrix I(~θ).

Under these conditions, V[~θML]→ 1
I(~θML)

, and the intervals can be computed as:

∆lnL := lnL(θ′)− lnLmax = −
1
2

The resulting interval has in general a larger probability content than the one for a gaussian
p.d.f., but the approximation grows better when N increases

The interval overcovers the true value ~θtrue
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How to extract an interval from the likelihood function /4
MLE is invariant for monotonic transformations of θ

This applies not only to the maximum of the likelihood, but to all relative values
The likelihood ratio is therefore an invariant quantity (we’ll use it for hypothesis testing)
Can transform the likelihood such that log(L(~x; ~θ)) is parabolic, but not necessary (MINOS/Minuit)

When the p.d.f. is not normal, either assume it is, and use symmetric intervals from Gaussian
tails...

This yields symmetric approximate intervals
The approximation is often good even for small amounts of data

...or use asymmetric intervals by just looking at the crossing of the log(L(~x; ~θ)) values
Naturally-arising asymmetrical intervals
No gaussian approximation

In any case (even asymmetric intervals) still based on asymptotic expansion
Method is exact only to O( 1

N )

Plot from James, 2nd ed.
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How to extract an interval from the likelihood function—interpretation

~θtrue is therefore stimated as θ̂ = ~θML ± σ. This is another situation in which frequentist and
Bayesian statistics differ in the interpretation of the numerical result

Frequentist: ~θtrue is fixed
“if I repeat the experiment many times, computing each time a confidence interval around ~θML, on
average 68.3% of those intervals will contain ~θtrue”
Coverage: “the interval covers the true value with 68.3% probability”
Direct consequence of the probability being a property of data sets

Bayesian: ~θtrue is not fixed
“the true value ~θtrue will be in the range [~θML − σ, ~θML + σ] with a probabilty of 68.3%”
This corresponds to giving a value for the posterior probability of the parameter ~θtrue
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Non-normal likelihoods and Gaussian approximation — 1

How good is the approximation L(~x; ~θ) ∝ exp
[
− 1

2 (~θ − ~θMLE)T H(~θ − ~θML)
]
?

Here H is the information matrix I(~θ)
True only to O( 1

N )

In these conditions, V[~θML]→ 1
I(~θML)

Intervals can be derived by crossings: ∆lnL = lnL(θ′)− lnLmax = k

This afternoon: we’ll convince ourselves of how good is this approximation in case of the
nuclear decay!
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Non-normal likelihoods and Gaussian approximation — 2
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Non-normal likelihoods and Gaussian approximation — 3
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The Central Limit Theorem

The convergence of the likelihood L(~x; ~θ) to a gaussian is a direct consequence of the central
limit theorem

Take a set of measurements~x = (xi, ..., xN) affected by experimental errors that results in
uncertainties σ1, ..., σN (not necessarily equal among each other)

In the limit of a large number of events, M →∞, the random variable built summing M
measurements is gaussian-distributed:

Q :=
M∑

j=1

xj ∼ N
( M∑

j=1

xj,
M∑

j=1

σ2
j

)
, ∀ f (x, ~θ)

The demonstration runs by expanding in series the characteristic function yi =
xj−µj√
σj

The theorem is valid for any p.d.f. f (x, ~θ) that is reasonably peaked around its expected value.
If the p.d.f. has large tails, the bigger contributions from values sampled from the tails will have a
large weight in the sum, and the distribution of Q will have non-gaussian tails
The consequence is an alteration of the probability of having sums Q outside of the gaussian
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Asymptoticity of the Central limit theorem

The condition M →∞ is reasonably valid if the sum is of many small contributions.

How large does M need to be for the approximation to be reasonably good? Question time:
Central Limit

This afternoon we’ll check!

Not much!
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And in many dimensions...

Construct logL contours and determine confidence intervals by MINOS
Elliptical contours correspond to gaussian Likelihoods

The closer to MLE, the more elliptical the contours, even in non-linear problems
All models are linear in a sufficiently small region

Nonlinear regions not problematic (no parabolic transformation of logL needed)
MINOS accounts for non-linearities by following the likelihood contour

Confidence intervals for each
parameter

max
θj,j6=i

logL(θ) = logL(θ̂)− λ

λ =
Z2

1−β
2

λ = 1/2 for β = 0.683 (“1σ”)
λ = 2 for β = 0.955 (“2σ”)

Plot from James, 2nd ed.
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Profile likelihood ratio step by step for cross sections — Expected events
We used to compute the total cross section of a given process by applying the naïve formula

σ =
Ndata − Nbkg

εL
.

Nsig estimated from Ndata − Nbkg for the measured integrated luminosity L
The acceptance ε accounts for th. branching fractions fiducial region for the measurement
(fiducial region: generator-level selection which defines the phase space of the measurement)

Nowadays we model everything into the likelihood function
p(x|µ, θ) pdf for the observable x to assume a certain value in a single event

µ := σ
σpred

(single- or multi-dimensional) parameter of interest (POI). A multiplier of the predicted

cross section: signal strength
θ (generally multi-dimensional) nuisance parameter representing all the uncertainties affecting the
measurement.

Extend to a data set of many events X = {x1, ..., xn} by taking the product of the single-event
p.d.f.s.

n∏
e=1

p(xe|µ, θ)

The number of events in the data set is however a random variable itself!
Poisson distribution with mean equal to the number of events ν we expect from theory

Marked Poisson model

f (X|ν(µ, θ), µ, θ) = Pois(n|ν(µ, θ))
n∏

e=1

p(xe|µ, θ) .

Pleasant quality read: Vischia, 2019 doi:10.1016/j.revip.2020.100046 ,

Vischia Statistics for HEP March 15th and 17th, 2021 104 / 128

https://doi.org/10.1016/j.revip.2020.100046


Profile likelihood ratio step by step for cross sections — Expected events
We used to compute the total cross section of a given process by applying the naïve formula

σ =
Ndata − Nbkg

εL
.

Nsig estimated from Ndata − Nbkg for the measured integrated luminosity L
The acceptance ε accounts for th. branching fractions fiducial region for the measurement
(fiducial region: generator-level selection which defines the phase space of the measurement)

Nowadays we model everything into the likelihood function
p(x|µ, θ) pdf for the observable x to assume a certain value in a single event

µ := σ
σpred

(single- or multi-dimensional) parameter of interest (POI). A multiplier of the predicted

cross section: signal strength
θ (generally multi-dimensional) nuisance parameter representing all the uncertainties affecting the
measurement.

Extend to a data set of many events X = {x1, ..., xn} by taking the product of the single-event
p.d.f.s.

n∏
e=1

p(xe|µ, θ)

The number of events in the data set is however a random variable itself!
Poisson distribution with mean equal to the number of events ν we expect from theory

Marked Poisson model

f (X|ν(µ, θ), µ, θ) = Pois(n|ν(µ, θ))
n∏

e=1

p(xe|µ, θ) .

Pleasant quality read: Vischia, 2019 doi:10.1016/j.revip.2020.100046 ,
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Profile likelihood ratio step by step for cross sections — Systematic uncertainties

Both µ and θ act on the individual pdfs for the observable and on the expectation for the
global amount of events
Incorporate systematic uncertainties as nuisance parameter θ:
Conway, 2011 in CERN-2011-006115

Constrain the terms in the fit: constraint interpreted as prior coming from the auxiliary measurement
θ estimated with uncertainty δθ
Often Gaussian pdf, unless θ has a physical bound at zero: then log-normal (rejects negative values)

Likelihood L(µ, θ; X): take the marked Poisson model f (X|ν(µ, θ), µ, θ) and condition on the
observed value of X

MLE: µ̂ := argmaxµL(µ, θ; X) still depends on the nuisance parameters θ

L(n,α0|µ,α) =
∏

i∈bins

P(ni|µSi(α) + Bi(α))×
∏

j∈syst

G(α0
j |αj, δαj)y

L(n, 0|µ,α) =
∏

i∈bins

P(ni|µSi(α) + Bi(α))×
∏

j∈syst

G(0|αj, 1)

Pleasant quality read: Vischia, 2019 doi:10.1016/j.revip.2020.100046 ,
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Eliminate dependence on the nuisance parameters
Likelihood ratio!

λ(µ) :=
L(µ,

ˆ̂
θ)

L(µ̂, θ̂)
.

Denominator L(µ̂, θ̂) is computed for the values of µ and θ which jointly maximize the
likelihood function.

Profiling: eliminating the dependence on the nuisance parameters by taking their conditional
maximum likelihood estimate
Bayesians normally marginalize (integrate) rather than profiling (see Demortier, 2002)

The maximum of the likelihood ratio yields the point estimate for µ
The second derivative of the maximum likelihood ratio yields intervals on the parameter µ

Tomorrow: the tricky cases (e.g. point estimate near the physical range allowed for the parameter)

Pleasant quality read: Vischia, 2019 doi:10.1016/j.revip.2020.100046 ,
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What do I need to profile?

The likelihood ratio λ(µ) =
L(µ,

ˆ̂
θ(µ))

L(µ̂,θ̂)

Conceptually, you can run the experiment many times (e.g. toys) and record the value of the
test statistic

The test statistic can therefore be seen as a distribution

Asymptotically, λ(µ) ∼ exp
[
− 1

2χ
2
](

1 +O( 1√
N

)
)

(Wilks Theorem, under some regularity
conditions—continuity of the likelihood and up to 2nd derivatives, existence of a maximum,
etc)

The χ2 distribution depends only on a single parameter, the number of degrees of freedom
It follows that the test statistic is independent of the values of the nuisance parameters
Useful: you don’t need to make toys in order to find out how is λ(µ) distributed!
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What is a nuisance parameter?

Sometimes the classification into POI and nuisance parameter washes out

Maybe you data and your method can provide information on a systematic uncertainty

Plot from doi:10.1007/JHEP12(2012)105
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Constrained nuisance parameters

More often, the analysis is not sensitive enough to treat an uncertainty as POI and measure it

The fit can still constrain the nuisance parameter that is profiled
Indirectly provides information about your estimate of that parameter before the fit

Over- or under-estimate θ before the fit
See a best fit value for θ that doesn’t match very well with the prefit value

Quote, for each nuisance parameter, two important quantities
Pull: the difference of the post-fit and pre-fit values of the parameter, normalized to the pre-fit
uncertainty: pull := θ̂−θ

δθ
Constraint: the ratio between the post-fit and the pre-fit uncertainty in the nuisance parameter.
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Pulls and Constraints

Pull: the difference of the post-fit and pre-fit values of the parameter, normalized to the pre-fit
uncertainty: pull := θ̂−θ

δθ

Constraint: the ratio between the post-fit and the pre-fit uncertainty in the nuisance
parameter.
Spot easily possible issues in the fit

θ pulled too much may be a hint that our estimate of the pre-fit value was not reasonable
θ constrained too much indicates that the data contain enough information to improve the precision in
the nuisance parameter with respect to our original estimate, which may or may not make sense.
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Question time, pulls and constraints

What is more worrying, a small pull with a small constraint, or a large pull with a strong
constraint? Question time: Pulls and Constraints

A pull with very small constraint: θprefit = 0± 1, θpostfit = 1± 0.9

The same pull with a strong constraint: θprefit = 0± 1, θpostfit = 1± 0.2

A way of estimating if a shift is significant is to compare the shift with its uncertainty

For independent measurements, the compatibility C is

C = ∆θ/σ∆θ =
θ2 − θ1√
σ2

1 + σ2
2

We would conclude that the first case C = 0.74, for the second one C = 0.98 (larger, still
within uncertainty)

However, these are not independent measurements!

The formula is therefore
C = ∆θ/σ∆θ =

θ2 − θ1√
σ2

1 − σ
2
2

For the first case, C = 2.29, for the second case C = 1.02

The same pull is more significant if there is (almost no) constraint!!!
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Impacts
Impact of θ on the post-fit signal strength permits to obtain a ranking of the nuisance
parameters in terms of their effect on the signal strength

Fix each nuisance parameter to its post-fit value θ̂ plus/minus its pre-fit (post-fit) uncertainty δθ (δθ̂)
Reperform the fit for µ
Compute the impact as the difference between the original fitted signal strength and the refitted signal
strength.

Results on Asimov dataset (replacing the data with the expectations from simulated events) is
expected to give “perfect” results
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Breakdown of systematic uncertainties
What’s the amount of uncertainty that is impotable to a given set of systematic effects?

The modern expression of Fisher’s formalization of the ANOVA concept
“the constituent causes fractions or percentages of the total variance which they together produce”
(Fisher, 1919)
“the variance contributed by each term, and by which the residual variance is reduced when that term
is removed” (Fisher, 1921)

Breakdown the contributions
Freeze a set of uncertainties θi to their post-fit value
Repeat the fit to extract a new (smaller) uncertainty on µ
Obtain the contribution of θi to the overall uncertainty as squared difference betwee the full and
reduced uncertainties
Statistical uncertainty obtained by freezing all nuisance parameters

Toy data
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From sidebands to systematic uncertainties

Measure a background rate in a sideband, use the estimate in the signal region

As described, let’s model our estimation problem using profile likelihoods
L(n,α0|µ,α) =

∏
i∈bins

P(ni|µSi(α) + Bi(α))×
∏

j∈syst

G(α0
j |αj, δαj)

λ(µ) =
L(µ, ˆ̂αµ)

L(µ̂,α̂)

Sideband measurement

Lfull(s, b) = P(NSR|s + b)× P(NCR|τ̃ · b)

Subsidiary measurement of the background rate:
8% systematic uncertainty on the MC rates
b̃: measured background rate by MC simulation
G(b̃|b, 0.08): our

Lfull(s, b) = P(NSR|s + b)× G(b̃|b, 0.08)
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Renormalization of the subsidiary measurement

L(n,α0|µ,α) =
∏

i∈bins

P(ni|µSi(α) + Bi(α))×
∏

j∈syst

G(α0
j |αj, δαj)y

L(n, 0|µ,α) =
∏

i∈bins

P(ni|µSi(α) + Bi(α))×
∏

j∈syst

G(0|αj, 1)

Subsidiary measurement often labelled constraint term

It is not a PDF in α: G(αj|0, 1) 6= G(0|αj, 1)

Response function: B̃i(1 + 0.1α) (a unit change in α –e.g. 5% JES– changes the acceptance
by 10%)

Graphics from W. Verkerke
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Caveats on modelling theory uncertainties (P.V. at Benasque 2018)
Cross section uncertainty: easy, assuming a gaussian for the constraint term
Lfull(s, b) = P(NSR|s + b)× G(b̃|b, 0.08)
Factorization scale: what distribution F is meant to model the constraint???
Lfull(s, b) = P(NSR|s + b(αFS)×F(α̃FS|αFS)

“Easy” case, there is a single parameter αFS, clearly connected to the underlying physics model
Hadronization/fragmentation model: run different generators, observing different results

Difficult! Not just one parameter, how do you model it in the likelihood?
2-point systematics: you can evaluate two (three, four...) configurations, but underlying reason for
difference unclear
Often define empirical response function

Counting experiment: easy extend to other
generators

There must exist a value of α corresponding
to SHERPA

Shape experiment: ouch!

SHERPA is in general not obtainable as an
interpolation of PYTHIA and HERWIG

Graphics from W. Verkerke
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Define a constraint term

Attempting to quantify our knowledge of the models

There is no single parameter, difficult to model the differences within a single underlying
model

Which of these is the “correct” one?

Graphics from W. Verkerke
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Solving the delta functions issue: discrete profiling

Label each shape with an integer, and use the integer as nuisance parameter

Can obtain the original log-likelihood as an envelope of different fixed discrete nuisance
parameter values
How do you define the various shapes?

Need many additional generators!
Interpolation unlikely to work (SHERPA is not midway between PYTHIA and POWHEG)

From arXiv:1408.6865
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The issue of over-constraining

How to interpret
constraints?

Not as measurements
Correlations in the fit
make interpretation
complicated

Avoid statements when
profiling as a nuisance
parameter

Graphics from ATLAS and W. Verkerke, as far as I remember
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Systematic uncertainties and closure tests

Closure tests are alternative procedures you can use to check if your measurement is robust
E.g. insensitive to systematic effects
Usually compare alternative result with nominal result (GoF test) to decide if closure test passed

Closure tests are PASS/FAIL tests
Correct course of action: if closure test fails, then there is a mistake in the tested procedure,
therefore modify/improve the procedre

If the alternative procedure highlights e.g. a recalibration to be done, then recalibrate (i.e. use the
better procedure)

Wrong course of action: if closure test fails, add discrepancy as uncertainty
The sentence “The closure test shows a 10% discrepancy, and we consequently assign it as
systematic uncertainty” is pure BS (although you’ll sadly find it in many published papers)

In general, if a closure test fails, always prioritize a mitigation or suppression of the effect by
improveming your analysis methods

A systematic should be added only as a very very last resort
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Combination of measurements

Measure N times the same quantity: values xi and uncertainties σi. MLE and variance are:

x̂ML =

∑N
i=1

xi
σ2

i∑N
i=1

1
σ2

i

1
σ̂2

x
=

N∑
i=1

1
σ2

i

The MLE is obtained when each measurement is weighted by its own variance
This is because the variance is essentially an estimate of how much information lies in each
measurement

This works if the p.d.f. is known
Compare this method with an alternative one that does not assume knowledge of the p.d.f.
The second method will be the only one applicable to cases in which the p.d.f. is unknown
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Combination of measurements: alternative method 1/

Take a set of measures sampled from an unknown p.d.f. f (~x, ~θ)

Compute the expected value and variance of a combination of such measurements described
by a function g(~x).

The expected value and variance of xi are elementary:

µ = E[x]Vij = E[xixj]− µiµj

If we want to extract the p.d.f. of g(~x), we would normally use the jacobian of the
transformation of f to g, but in this case we assumed f (~x) is unknown.
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Combination of measurements: alternative method 2/

We don’t know f , but we can still write an expansion in series for it:

g(~x) ' g(~µ) +
N∑

i=1

( ∂g
∂xi

)∣∣∣
x=µ

(xi − µi)

We can compute the expected value and variance of g by using the expansion:

E
[
g(~x)

]
' g(µ), (E[xi − µi] = 0)

σ2
g =

N∑
ij=1

[ ∂g
∂xi

∂g
∂xj

]∣∣∣
~x=~µ

Vij

The variances are propagated to g by means of their jacobian!

For a sum of measurements, y = g(~x) = x1 + x2, the variance of y is σ2
y = σ2

1 + σ2
2 + 2V12,

which is reduced to the sum of squares for independent measurements
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Combination of measurements: example 1/

Let’s compare the two ways of combining measurements, and check the role of the Fisher
Information
Let’s estimate the time taken for a laser light pulse to go from the Earth to the Moon and back
(in units of Earth-to-Moon-Time EMT)

On the Moon we have a receiver built by NASA. It’s very good but placed in unfavourable conditions,
yielding only a 2% precision on Earth-to-Moon
On Earth we have a receiver made out of scrap material. It is however placed in favourable
conditions, yielding a 5% precisionon Moon-to-Earth

NEM = 0.99± 0.02 EMT

NME = 1.05± 0.05 EMT

Evidently, the time to moon and back is NEME = NEM + NME, and we can apply Eq. 123: Do it!

Resulting estimate:
NEME = 0.99 + 1.05±

√
0.022 + 0.052 EMT = 2.05± 0.05 EMT, corresponding to a precision of

σNEME
NEME

∼ 2.4%.
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Combination of measurements: example 2/

We now however can argue that over the time it takes for light to go to the Moon and back any
environment condition would be roughly constant

How can we exploit this additional information? Question Time: Combining Estimates

We can use this additional information to note that the two estimates NEM and NME are
independent estimates of the same physical quantity NEME

2

Compute NEME and σ(NEME)based on this reasonment

We can therefore use Eq. 121 to compute NEME
2 and multiply the result by 2, obtaining

NEME = 2.00± 0.03 EMT

This estimate corresponds to a precision of only 1.5%!!!

The dramatic improvement in the precision of the measurement, from 2.4% to 1.5%, is a
direct consequence of having used additional information under the form of a relationship
(constraint) between the two available measurements.
A good physicist exploits as many constraints as possible in order to improve the precision of
a measurement

Sometimes the contraints are arbitrary or correspond to special cases
Is is very important to explicitly mention any constraint used to derive a measurement, when quoting
the result.
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What about asymmetric uncertainties?

Now suppose my receivers operate by taking data and performing a maximum likelihood fit to
estimate NEM and NME

Can I combine these two measurements with the two methods seen above?
NEM = 0.99± 0.03
NME = 1.10+0.05

−0.01

For example, NEMT = 2.09+0.06
−0.03

No!

Why?
The naïve quadrature of the two uncertainties is wrong!

The naïve combination is an expression of the Central Limit Theorem
The resulting combination is expected to be more symmetric than the measurements it originates
from
Symmetric uncertainties usually assume a Gaussian approximation of the likelihood
Asymmetric uncertainties? One would need a study of the non-linearity (large biases might be
introduced if ignoring this)

Intrinsic difference between averaging and most probable value
Averaging results in average value and variance that propagate linearly
Taking the mode (essentially what MLE does) does not add up linearly!

With asymmetric uncertainties from MLE fits, always combine the likelihoods (better in an
individual simultaneous fit)
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from
Symmetric uncertainties usually assume a Gaussian approximation of the likelihood
Asymmetric uncertainties? One would need a study of the non-linearity (large biases might be
introduced if ignoring this)

Intrinsic difference between averaging and most probable value
Averaging results in average value and variance that propagate linearly
Taking the mode (essentially what MLE does) does not add up linearly!

With asymmetric uncertainties from MLE fits, always combine the likelihoods (better in an
individual simultaneous fit)
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Summary of the first day

Statistics is a tool to answer questions (but you must pose questions in a well-defined way)
Mathematical definition of probability based on set theory and on the theory of Lebesgue
measure

Frequentist and Bayesian statistics
Conditioning, marginalization
Expected values, variance

Random variables and probability distributions
Correlation vs causality

Information and likelihood principle
Sufficiency, ancillarity, pivoting

Estimators
Point estimates with the Maximum Likelihood Estimator (MLE)
Interval estimates with the MLE
The profile likelihood ratio and modelling of systematic uncertainties
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Non-exhaustive list of references

Frederick James: Statistical Methods in Experimental Physics - 2nd Edition, World Scientific

Glen Cowan: Statistical Data Analysis - Oxford Science Publications

Louis Lyons: Statistics for Nuclear And Particle Physicists - Cambridge University Press

Louis Lyons: A Practical Guide to Data Analysis for Physical Science Students - Cambridge
University Press

E.T. Jaynes: Probability Theory - Cambridge University Press 2004

Annis?, Stuard, Ord, Arnold: Kendall’s Advanced Theory Of Statistics I and II

Pearl, Judea: Causal inference in Statistics, a Primer - Wiley

R.J.Barlow: A Guide to the Use of Statistical Methods in the Physical Sciences - Wiley

Kyle Cranmer: Lessons at HCP Summer School 2015

Kyle Cranmer: Practical Statistics for the LHC - http://arxiv.org/abs/1503.07622

Roberto Trotta: Bayesian Methods in Cosmology - https://arxiv.org/abs/1701.01467

Harrison Prosper: Practical Statistics for LHC Physicists - CERN Academic Training Lectures,
2015 https://indico.cern.ch/category/72/

Christian P. Robert: The Bayesian Choice - Springer

Sir Harold Jeffreys: Theory of Probability (3rd edition) - Clarendon Press

Harald Crámer: Mathematical Methods of Statistics - Princeton University Press 1957 edition
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