Standard Model Processes

Course on Physics at the LHC

Jonathan Hollar (LIP) March 22, 2021

The Standard Model is...

One of the most predictive, precisely tested theories of nature in human history

The Standard Model is...

One of the most predictive, precisely tested theories of nature in human history

Kind of a bricolage, with good reasons to believe it's incomplete

=> Where will we see the SM predictions fail?

"Standard Model" encompasses many areas

Electroweak sector (this lecture)

Properties and interactions of *W*, *Z*, γ

- Is the SM self-consistent? (**Precision measurements**)
- Do EWK particles interact at the expected rates? (Cross sections & anomalous couplings)

QCD Interactions of gluons and quarks - see lecture on March 3

If time today - W/Z as tools to study QCD

Flavor and top physics

Properties and interactions of top and other heavy quarks or leptons

See lectures March 24- April 5 and May 3

Higgs physics

Properties and interactions of the Higgs boson

See lectures April 7-19

The tools: Large Hadron Collider at CERN

- proton-proton collisions at 7/8 TeV (Run 1), 13 TeV (Run2)
- SM-Electroweak mainly studied at the large general-purpose detectors CMS and ATLAS
 - Also at LHCb in the forward direction

The players: *W*, *Z*, γ

W and Z decays

- Most of the time, W and Z bosons decay into quarks/ hadrons
 - Followed by decays to neutrinos for the Z
 - High rate, but also low experimental resolution, high background

- Decays with muons and electrons
 - Low rate, but lowest background/cleanest signals
- Taus: Can be reconstructed via either decays to e/μ , or to hadrons

Leptonic Z reconstruction

- · $Z \rightarrow II$: One of the cleanest signatures at a hadron collider
 - Opposite charge high-p_T muons or electrons, with invariant mass near the Z mass (~91 GeV)
 - Lepton isolation (require leptons separated from other tracks/calorimeter deposits):
 - · Suppress "fake" backgrounds from QCD/misidentified hadrons, light meson decays-in-filght
 - · Suppress "non-prompt" leptons from decays of heavy flavor bottom/charm quarks

Leptonic W reconstruction

 W→Iv: high-p_T isolated muon or electron, with "missing transverse energy" inferred from sum of all particles from the collision vertex

- Presence of undetected neutrino
 => no clear invariant mass peak,
 so rely on other variables
 - Lepton p_T
 - Missing E_T or p_T
 - "Transverse mass", using angle between lepton and missing energy/momentum

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}p_{\rm T}^{miss}cos\Delta\phi}$$

Leptonic W and Z signals

Huge samples of W's and Z's produced via q/qbar interactions

- Even in the low branching-fraction leptonic decays
- In 150fb-1 at 13 TeV, expect:

٠

- \sim 3B W \rightarrow /v events produced
- $\sim 300 \text{M} Z \rightarrow // \text{events produced}$
- Very high signal/background, especially in $Z \rightarrow II$

Electroweak physics: Precision measurements of SM parameters

Precision SM measurements

Is the Standard Model self-consistent?

٠

٠

- Measure many observables closely related to SM parameters, then check if SM can fit all the data
- Electroweak sector traditionally the domain of e+ecolliders: LEP@CERN, SLC@SLAC
 - Hadron colliders unique for top, Higgs inputs (see upcoming lectures)

But LHC also produces enormous numbers of W,Z bosons => in some cases, can also do precision EWK measurements

Disagreement (# of standard deviations) from the SM

Precision SM measurements: W mass

- Basic approach: Generate many Monte Carlo "templates" simulated with different W-mass values
 - Fit to the data, to determine the best-fit mass

Requires extremely precise control of systematics

- Experimental aspects
 - Precision of lepton momentum/energy measurement
 - Control of missing E_T reconstruction
- Theory/model aspects
 - Uncertainties due to PDFs
 - Uncertainties due to "underlying event" activity produced together with the W
- Use comparisons to well-reconstructed Z samples to control (some of) these

Precision SM measurements: W mass

Precision SM measurements: weak mixing angle

- Weak mixing angle $sin^2 \Theta_{eff}$
 - Enters in $ff \rightarrow Z \rightarrow I^+I^-$ production via vector-axial interference
 - The two most precise measurements at e⁺e⁻ colliders are marginally consistent

Can be measured from "forwardbackward" asymmetry of leptons

 Count number of positively charged leptons along the inferred quark vs. the anti-quark direction

• Fit for best value of $sin^2\theta_{eff}$

٠

LHC measurements not yet the most precise, but becoming competitive

 $\sin^2 \theta_{\rm eff}^{\ell} = 0.23101 \pm 0.00036 \,({
m stat}) \pm 0.00018 \,({
m syst}) \pm 0.00016 \,({
m theo}) \pm 0.00031 \,({
m PDF})$

 TBD with more data/higher precision measurements

Electroweak physics: cross sections and gauge boson couplings

Rates of Standard Model processes and electroweak couplings

- Another way to test the Standard Model:
 - Do W/Z/γ's interact with each other as predicted by the Standard Model?
 - In other words does
 LHC measure cross
 sections involving gauge
 boson interactions at the
 rates expected from the
 SM?
 - Especially interesting to look in the high-energy tails of distributions

- Legacy of the LEP e⁺e⁻ collider: existence of charged triple gauge (WWZ/WWγ) couplings established
- LHC: increase in energy from ~0.2 TeV to ~13/14 TeV!

Gauge boson self-interactions

- Reminder: The SM precisely predicts the strength of EWK gauge boson interactions
 - True triple and quartic couplings involving W-pairs are predicted to occur
 - True neutral triple and quartic couplings (with all Z's or all γ's) are forbidden
 - Processes can occur through higher-order (loop/box) diagrams at very low rates

[Ref]

Triple gauge couplings: different views

- Usually more than 1 way to probe each coupling
 - Different experimental systematics, backgrounds, etc.
 - Study all of them to get a complete picture

Processes sensitive to WWγ couplings

"Anomalous" gauge couplings

- Differences (or not) from the SM can be quantified with "anomalous gauge couplings"
 - Mostly model-independent/ agnostic about details of new physics
- Modern interpretation

٠

 Assume new physics occurs at energies too high to directly produce new particles at the LHC

Energy

Anomalous couplings are "fingerprints" at lower energies from off-shell or loop-level effects

Anomalous couplings and indirect searches

Classic analogy: beta decay of neutrons

٠

- Discovered in 1899
- Apparent "Anomalous quartic coupling" of *npev* in original Fermi theory

- Higher energies (better microscope) were needed to allow direct observation of the mediator particle
 - W-boson finally detected in 1983
- Indirect searches/anomalous couplings sometimes point to new physics long before direct detection

Triple gauge couplings: anatomy of a LHC analysis

- Compare bulk of distribution to SM prediction+backgrounds
 - Quantify any deviations in the high energy tails

Triple gauge couplings with WW production

- Measure cross sections for events with 2 leptons + missing E_T
 - High statistics
 - Fairly low backgrounds from top quark production, QCD fakes - estimated from data control samples and simulation
 - (Even the Higgs could be considered a background here!)

- Overall, cross sections as a function of p_T agree with the Standard Model (Run 1 data shown)
 - Reminder: WWγ and WWZ couplings are allowed in the SM, and are included the cross section prediction

Triple gauge couplings with WW production (II)

- Anomalous couplings?
- Plot m_{ll} and zoom on the highmass tails
 - No sign of excess, data agrees with the SM

- Convert into upper limits on anomalous coupling parameters
 - One-by-one, or for several couplings in a 2-d space

ZZ and triple gauge couplings production

- Golden signature: 4 leptons, with 2 pairs compatible with a $Z^{(*)}$ (either e⁺e⁻, $\mu^+\mu^-$)
 - Very little background, especially at high mass
- Cross sections compatible with SM at lower mzz
- No sign of BSM couplings at large m_{ZZ}
 - Reminder: no direct ZZZ or γZZ couplings in the SM, prediction comes from q-qbar interactions

Summary of TGCs

- LHC has studied many more processes sensitive to TGCs
 - Charged TGCs are consistent with SM predictions
 - Neutral TGCs are consistent with 0 (=SM prediction) not shown

LHC limits on new physics in TGCs now the world's best

From TGCs to QGCs

- Triple Gauge Couplings seem to agree with the SM, within the current experimental precision
 - WWZ and WWγ measured at expected rates
 - No sign of unexpected all-neutral couplings

What about the Quartic Gauge Couplings?

- Much smaller cross sections
- Much less explored before the LHC

Quartic gauge interactions: triple-boson production

 One way to probe quartic couplings: look for events with 3 final-state gaugetime()ns

- With leptonic W or Z decays: 4, 5, or 6 leptons
- Very low cross sections a few events expected with all the currently available LHC data

Candidate for *WWZ* production 4 leptons + missing E_T $Z \rightarrow \mu \mu$ $W \rightarrow \mu \nu$ $W \rightarrow e \nu$

Quartic gauge interactions: triple-boson production

- Backgrounds from top quark production, diboson production + fake/non-prompt leptons
- Hunt for signal in tails of transverse mass (leptons+missing E_T), or using multi-variate analyses

Small excesses over background in several channels - compatible with SM signal!

Quartic gauge interactions: vector-boson scattering

- Scattering of 2 vector bosons to produce 2 vector bosons
 - $VV \rightarrow VV$

•

•

- **Spectacular signatures:**
 - Typically 2 high energy forward-backward quark jets, in addition to 2 vector bosons

Quartic gauge interactions: WW→WW scattering

- Intimately connected to Higgs sector and new physics
 - SM cross section would grow and become unitarity violating/unphysical at ~TeV scales, unless:
 - There is a Higgs boson OR other new physics
- Signal appears as excess of events with large m(jj) and $m_{\rm T}$
 - Fit for sum of signal and backgrounds
 - Now observed with $>5\sigma$ significance at the LHC
 - Next frontier with more data probe W polarization for greater sensitivity

Quartic gauge interactions: other VBS processes

- What about other vector-boson scattering processes?
- No anomalous excesses
- Several processes observed for the first time

More quartic gauge interactions: $\gamma\gamma \rightarrow WW$ scattering

٠

What about processes with *initial-state* photons radiated off of protons?

- Special case: usually no forward jets, infer γγ production by *lack* of other activity besides 2 W-bosons
- $\gamma\gamma \rightarrow$ WW studied by CMS and ATLAS, results consistent with the SM

Even more quartic gauge interactions: "Light-by-light" scattering

What about processes with *only* photons: $\gamma\gamma \rightarrow \gamma\gamma$?

- Very difficult in normal p-p collisions, so new techniques/detectors developed
- Heavy-ion collisions

•

٠

- Look for back-to-back photons with no other activity
- SM-like cross section measured, no new physics seen up to ~100 GeV
- p-p collisions with new forward proton detectors
 - No excesses observed from ~300 GeV to ~2 TeV -> limits on anomalous yyyy couplings

Putting it all together: cross sections and anomalous couplings

Production rates via gauge boson interactions

- Back to the original question:
 - Does LHC measure cross sections involving gauge boson interactions at the rates expected from the SM?
- So far, yes...
 - Over almost 6 orders of magnitude in cross section!

Rates of VBS/tri-boson processes

What about the very rare processes?

•

- Zoom in on tri-boson production and vector boson scattering
 - Plot ratio of measurement/SM prediction

Large uncertainties, but so far so good

Anomalous gauge couplings scorecard (I)

- LHC exploring all the possible EWK 3boson couplings
- Many upper limits placed on anomalous triple-gauge couplings
 - So far no deviations from the SM!

Anomalous gauge couplings scorecard (II)

- LHC exploring all the possible EWK 4-boson couplings
- Many upper limits placed on anomalous quartic-gauge couplings
 - Several for the first time
 - So far no deviations from the SM!

Electroweak physics - where to go from here?

- LHC precision measurements of some SM parameters start to be competitive with the best from e⁺e⁻ colliders
 - Important impact on global fits and combinations with Higgs, top data
- Pattern of gauge boson interactions/ couplings so far agrees with the Standard Model
 - Including several very rare processes observed for the first time at the LHC
 - In most cases, sensitivity is to ~TeV scale new physics with large couplings

- ~20x more data expected by the end of the HL-LHC program - probe smaller deviations from the SM
- Program of detector upgrades will enable new measurements/analysis techniques

W/Z as tools for QCD

W/Z as tools for QCD: PDFs

- Apart from "purely" electroweak physics, W/ Z can also be used to probe structure of the proton
 - Major uncertainty in many LHC measurements and searches: Parton Distribution Functions
 - Describe fraction of proton momentum carried by the partons (quarks or gluons)
- Jet production more sensitive to gluon PDFs, Z and W depend on quark PDFs

|Ref|

W/Z as tools for QCD: PDFs

- Measure differential cross sections
 - In invariant mass+rapidity for Z (or non-resonant Drell-Yan)
 - Separately for W⁺ and W⁻
 - Different sensitivity to up and down quark PDFs
 - Differences between different PDF predictions

٠

٠

=> Use data for the second s

W/Z as tools for QCD: Double-parton scattering

- Usually only 1 "hard" quark or gluon interaction in a single proton-proton collision
 - In rare cases can have 2 or more => "Double parton scattering"
 - Can produce spectacular/"weird" signatures
 - Potential background to new physics searches, and electroweak measurements

W/Z as tools for QCD: Double-parton scattering

٠

Summary

٠

- The electroweak sector of the Standard Model has been so far remarkably (ridiculously) successful, even at LHC energies
 - Attempts to break it are ongoing from all directions
 - Combination of precision measurements of SM parameters
 - Searches for excesses in high-energy tails of distributions/anomalous couplings
 - Close connections to Higgs, top, flavorphysics studies (see upcoming lectures)

Extra