TÉCNICOLISBOA

Search for non-resonant Higgs boson pair production in $b\bar{b}\gamma\gamma$ final states in p-p collisions at $\sqrt{E} = 13$ TeV

Sebastião Antunes nr 87355

Introduction

- Higgs potencial takes the form: $V(\phi) = \mu^2 | \phi$
- To expand around one of the minima, we first explicitly break electroweak symmetry. Result:

$$V(h) = \frac{1}{2}m_{H}^{2} + \sqrt{\frac{\lambda}{2}}m_{H}h^{3} + \frac{\lambda}{4}h^{4}$$

- To probe the structure of the potential we require information on the three Higgs coupling λ_{HHH} .
- κ_{λ} also confirms if symmetry breaking is SM-like.
- This and other couplings can only be directly studied in di-Higgs channel at LHC.
- Possibility of studying BSM interactions that might contribute to production

$$|^{2} + \lambda (|\phi|^{2})^{2}$$

Symmetry breaking to the conventional $|\phi|^2 = -\mu^2/2\lambda$ minimum

Di-Higgs production: SM

- **GGF:** as for single Higgs the main production mode in p-p collisions ($\sigma \approx 30$ fb).
- **VBF:** second most dominant HH production mode ($\sigma \approx 2$ fb). Quarks scatter via the exchange of a virtual vector boson.
- Despite significantly lower σ the unique kinematics of the deflected quarks make this channel appealing \rightarrow competitive sensitivity to trilinear coupling and unique handle on C_{2V} .
- c_V is also controlled by vector boson production of single Higgs and the decay of H to boson pairs.

Di-Higgs production: Beyond SM

- exclude enhancements by correct null + test statistics:
 - Discovery: $H_0 = b only$, downward fluctuations of b are not evidence against it. 1.
 - Exclusion: $H_0 = b + s$, upper limit \rightarrow exclude by p-value. 2.

- Enhancements can be resonant (new resonance couples to t quark or vector boson) or **non-resonant**:
 - Variation of SM parameters
 - 2. Inclusion of couplings non-SM couplings through effective Lagrangian

Small HH cross section \rightarrow current measurements have no sensitivity to SM production but we might discover/

Di-Higgs production: Beyond SM

• κ_{λ} deviations:

- 1. enhancement to σ_{ggF} by \downarrow destructive interference among box and triangle diagrams (maximal at 2.45 SM);
- 2. enhancement to $\sigma_{VBF} \approx$ same % with min closer to SM value and << absolute \downarrow .
- $\kappa_{C_{2V}}$ deviations: any deviation from SM significantly \uparrow $\sigma_{VBF} \rightarrow$ high sensitivity.
- **EFT for VBF:** only consider variations (C_V as well).
- EFT for ggF: operators up to 6D \rightarrow 3 new contact interactions + variations on κ_{λ} and κ_{t} .
- over phase space.

• 12 benchmark H (\neq comb of parameters) shown to represent main kinematical observables dist

Di-Higgs Decay: Why *bbyy* **channel?**

- Properties of both Higgs need to be considered.
- The small σ_{HH} cross section motivates searches targeting higher branching ratio modes. However, event purity is also important.
 - 1. *bbbb*: multiple triggers for 4 jets, high QCD multi-jet background;
 - **2.** $b\overline{b}WW^*$: large irreducible $t\overline{t} \rightarrow b\overline{b}WW^*$ background;
 - **3.** $bb\tau\tau$: moderate $t\bar{t}$ decay + multi-jet background;
 - **4.** $b\overline{b}\gamma\gamma$: low background (as $b\overline{b}ZZ^*$) + $H \rightarrow \gamma\gamma$ good mass resolution and clean di-photon trigger.

Events: Data Sample, Reconstruction + selection

- measures E, momentum and charge for participating particles.
- Analysed data comprises 2016 2017 2018 runs. To select ggF events:
 - (trained on isolation and shower shape criteria in $Z \rightarrow ee$ events)
 - Require two photons for triggering with 100 < m2. more than 2 γ choose pair of highest p_T .
 - against di-photon criteria). Double jet requirement allows 99.9% efficiency.
- and photon + b candidates) and energetic "VBF-tagged" jets.

CMS identifies collisions vertices + particles by: track-finding, e/μ ID and reconstruction and jet clustering. CMS records interesting events (e.g. heavy jets, clean μ signals) after a 2 level trigger. It

Identify photons: reconstructed E clusters not linked to charged tracks and use BDT to distinguish from jets

$$m_{\gamma\gamma} < 180$$
 GeV, $p_T^{\gamma 1} > m_{\gamma\gamma}/3$ and $p_T^{\gamma 2} > m_{\gamma\gamma}/4$ + geometry. F

3. From photon candidates: identify primary pp vertex with BDT (trained on simulated ggF events for track recoiling

4. Require your 2 jets to have $p_T > 25$ GeV, $\Delta R_{\gamma i} > 0.4$, geometry, not to be from calorimeter noise (associated btagging score from other vertex algorithm -DNN) and $70 < m_{ii} < 190$ GeV. For more than 2: b score.

• For VBF there are 2 additions jets from the scatter quarks \rightarrow additional criteria based on well separated (from each other

Events: Simulation

- For H testing we need a signal model \rightarrow need signal simulation.
- simulations with $\neq \kappa_{\lambda}$. Full top quark mass dependence also modelled.
- 5D spacey reweighing. Can only be done at LO.
- **VBF events** are generated at LO for different combinations of $(\kappa_{\lambda}, c_V, c_{2V})$.
- optimisation of categories for analysis (later). The possible types are:
 - **1.** $\gamma\gamma$ +jets (irreducible) at LO: dominant!
 - γ +jets (reducible) where jets are misidentified as isolated photon and b jets. 2.
 - **3.** $H \rightarrow \gamma \gamma$ (resonant, simulation-driven) at NLO for ggF H, VBF H, $t\bar{t}$ H, V H.
- All simulations use a Parton Shower scheme.

• ggF events are simulated at NLO, for samples with \neq values of κ_{λ} . Samples for any point in $(\kappa_{\lambda}, \kappa_{t})$ from the LC of 3

• Signal samples simulations are also performed for the benchmark H described by $(\kappa_{\lambda}, \kappa_{t}, c_{2}, c_{g}, c_{2g})$. These represent the distribution of kinematic variables over the hole parameter space \rightarrow Add them (\uparrow N) and recover any point in the

Background events: estimated by data-driven methods but we require simulations for MVA discriminants +

Analysis Strategy

- narrative.

We expected: low sensitivity due to small BR \rightarrow goal is to improve sensitivity while keeping a data driven

Strategy: simulate resonant background and signal events \rightarrow run them through selection \rightarrow study $(m_{\gamma\gamma}, m_{ii})$ distribution of simulation vs data candidates \rightarrow identify distinguishing characteristics for signal vs background .

Improvement: train MVA classifier in MC samples signal+background and apply to actual data. Perform the fit in the mutually exclusive ggF and VBF categories we will obtain (already with less background), simultaneously.

- Background: falling spectrum (nonresonate) + Signal: peak \rightarrow signal extraction = fit of candidates in $(m_{\gamma\gamma}, m_{ii})$ plane.
- $M_X = m_{\gamma\gamma jj} (m_{jj} m_H) (m_{\gamma\gamma} m_H)$ particularly sensitive to \neq values of the couplings.

Background Rejection

- Two types of backgrounds: resonant (similar shape to the signal \rightarrow simulation driven rejection necessary) and non-resonate (falling spectrum \rightarrow reduced by simulation rejection before data drive estimation).
- **Resonate rejection:** where signal is purest $t\bar{t}H$ production is dominant \rightarrow dedicated classifier (ttH score). Trained on SM HH + 12 H (s) and $t\bar{t}H$ events (b). Uses low level and kinematic features (angular variables + variables do distinguish decays of W produced by top quark). Implemented with DRNN.
- Non resonate rejection: BDT tree to separate ggF events and background. Trained on $\gamma\gamma + jets$ and $\gamma + jets$ events (b) and SM ggF + 12 H (s) Uses kinematic variables (angular, single H and transverse HH), ID variables (photon ID + b tagging) for reducible background and energy resolution variables.
- Remark: BST output transformed for uniform signal.

VBF Background Rejection and Signal Categorisation

- 1/3 of ggF events passing selection criteria also pass dedicated VBF criteria \rightarrow to separate them from resonant background and ggF need another BDT.
- Trained with MC non-resonant backgrounds and SM ggF simulated events (b) and a mix of SM VBF and $c_{2V} = 0$ (s). Uses same criteria as before + dedicated VBF-tagged jets criteria (kinematic variables, invariant mass, rapidity difference, quark-gluon likelihood, etc). Two \neq regions are trained: low M_X sensible to SM and high M_X sensible to c_{2V} anomalous values.
- Events are further subcategorised taking into consideration MVA scores and M_X ranges and optimising for significance S/\sqrt{B} .
- MVA scores optimised simultaneously. For MVA VBF < 0.52 background contamination to \uparrow for sensitivity to increase, same for MVA ggF < 0.37. Sub categories are optimised based on M_X for ggF.
- Events not passing selection for HH categories are tested for $t\bar{t}H$ for combined analysis of κ_{λ} and κ_{t} .

Category	MVA	\widetilde{M}_X (GeV)
VBF CAT 0	0.52 - 1.00	>500
VBF CAT 1	0.86 - 1.00	250-500
ggF CAT 0	0.78 - 1.00	>600
ggF CAT 1		510-600
ggF CAT 2		385-510
ggF CAT 3		250-385
ggF CAT 4	0.62-0.78	>540
ggF CAT 5		360-540
ggF CAT 6		330-360
ggF CAT 7		250-330
ggF CAT 8	0.37-0.62	>585
ggF CAT 9		375–585
ggF CAT 10		330-375
ggF CAT 11		250-330

Models + Systematics

- To extract the signal, in each HH categories, we perform fits in $(m_{\gamma\gamma}, m_{tt}) \rightarrow$ need a shape template \rightarrow simulation.
- Final 2D signal model is product of m_{ii} and $m_{\gamma\gamma}$. Correlations are not significant (by comparing simulated $m_{ii} - m_{\gamma\gamma}$ in signal samples with the built 2D one).
- Single Higgs background (resonant) shape is constructed from same methodology.
- Non-resonant background model extracted from data. Uses profiling method that consideres analytical function choice as nuisance, when profiling.
- Systematics: only affect 1st two models (data-driven method accounts for \neq function choices). A study of main sources confirms statistical limitation of this search. (impact: 2%)

CL_S + Results

• Sensitivity problem: when sensitivity is \downarrow we might reject the null when the alternate also deserves it (low power agains alternate).

- To extract HH signal: fit to all 14 HH categories w/ L defined for each using s and b models + nuisance theoretical and experimental systematics.
- No significant deviation from b-only.

95% CL on $\mathscr{B}(HH \rightarrow \gamma\gamma bb) = 0.67(0.45)$ fb 7.7 (5.2) \times SM.

Results: Brasilian-flag plots

- Limits can be set (using all HH categories) as a function of κ_{λ} , assuming SM-like properties for other processes ($\kappa_r = 1$).
- Taking advantage of categorisation = focusing on one category and constraining yield of mutually exclusive ones to SM signals.
- Upper limits on $\sigma_{VBF} HH \mathscr{B}(HH \to \gamma \gamma b \overline{b} = 1.02(0.94)$ fb or $225(208) \times SM$ (most stringent).

Results: Combined Searches

- If we assume a a HH signal with SM properties we can constrain κ_{λ} , κ_t , c_{2V}
- searches \rightarrow evaluate likelihood on Asimov data set.

• Combining HH categories with $t\bar{t}H$ one (signal extracted from $m_{\gamma\gamma}$ fit) we can perform further

Previous best

CMS NOW

Atlas 2018

